
1

0.1 Some Introductory Lisp

List Constructing Functions

(cons arg1 arg2) { constructs a new list whose �rst element is the value of arg1 and
whose remainder is the value of arg2. In essence, it puts the value of arg1 as the �rst
element of the list which is the value of arg2.

List Selector Functions

(car list) { returns the �rst element of the list once it has been evaluated.

(cdr list) { returns the evaluated list with all but its �rst element.

Giving Values to Variables

We can give values to variables { typically we don't use this function when we are
programming, rather we use it a lot when we are testing functions and get tired of writing
out long expressions.

(setf var-name s-exp) { this function is special in the way that the arguments are
evaluated. In particular, the �rst argument IS NOT EVALUATED, while the second
argument IS EVALUATED. The function sets var-name to the value of s-exp. E.g.,

> a

>>Error: The symbol A has no global value.

SYMBOL-VALUE:

Required arg 0 (S): A

:C 0: Try evaluating A again

:A 1: Abort to Lisp Top Level

-> 1

Abort to Lisp Top Level

Back to Lisp Top Level

> (setf a '(a b c))

(A B C)

> a ; note we can now type a and it has a value!

(A B C)

> (setf d '(d e f))

(D E F)

> (cons (car a) (cddr d))

(A F)

CIS681 { Arti�cial Intelligence 2

0.1.1 De�ning your own programs

(Wilensky Chapter 3)

All programs in lisp are functions { they are given 0 or more arguments and return 1 value
(in general). In addition, some of these functions may have side-e�ects.

Lisp gives us a special function for de�ning functions:

(defun fn-name (arg-list)

exp-1

.

. function body

.

exp-n)

defun is a special function whose arguments are not evaluated. The value of the function
happens to be the function name, but that is not really important. defun has an
important side-e�ect { fn-name is de�ned as a function whose formal parameters are
arg-list and whose body is exp-1...exp-n.

0.1.2 Flow of Control

(Wilensky Chapter 4)

We can't do too many interesting things yet, we would like some functions that give you
some control over how things are evaluated. The most important and widely used such
function is the cond which is similar to a case statement or extended if-then-else statement.

(cond (e11 e12 ... e1n1)
(e21 e22 ... e2n2)

.

.

.
(em1 em2 ... emnm))

where the n's � 1 and m � 1.

cond is a special function. It evaluates e11, e21,... in turn until one is found that is
non-nil. Call that ek1. Then the expressions ek2... eknk are evaluated. The value of eknk
is returned as the value of the cond. Note, if none of the e1i's evaluate to non-nil, then nil
is returned as the value.

*** notice the convention in lisp. false=NIL, true=everything else.

