
1

0.1 Some Introductory Lisp Concepts

Why Lisp?

� oriented toward symbol manipulation

{ automatic facilities for associating information with symbols

{ easily constructed data structures

� more exible than most programming languages { user's have lots of control over how
they choose to program, can tailor things to look the way they want.

Where Di�erent

1. Lisp is an interpreted language { so can get immediate feedback. The functions you
write can be compiled, but usually this is not done until all debugging is �nished.

2. Everything is viewed as a list. Programs and data look the same.

3. Language gives natural functions for dealing with lists { provides list manipulation
functions to put lists together, take them apart, walk through lists, etc...

4. As a programmer, you are encouraged to program in a recursive style.

The Data Structures { The basic data structure is termed an s-expression (symbolic
expression). They come in two (three) avors:

1. atoms { numbers and identi�ers (where identi�ers is a combination of numbers and
letters and some other special symbols)

2. lists = (s-expression1 s-expression2 ... s-expressionn) n � 0, empty list = (), nil.

3. dotted pair = (s-expression . non-nil-atom)

s-expressions
a
a2635
(A)
()
((A))
(a b)
((A) (B))
(((a) b))
a.b (no good!)
(a . b . c) (no good!).

CIS681 { Arti�cial Intelligence 2

Evaluation Rules

1. Atom

(a) number { the value of a number is that number itself.

(b) t or nil { evaluate to themselves (t and nil are special atoms).

(c) any other identi�er { look up value of it as a variable.

[So, at this point we know we can type numbers and t or () or nil at lisp and it will
return the same thing back. We can't yet do identi�ers since we don't know how to
set their values yet.]

2. Lists { The �rst element of a list denotes a function (or operator) name and the
remaining elements are its arguments. There are two cases:

(a) Normal Function { evaluates all arguments in a left to right order, and then
applies the function to the resulting values.

(b) Special Functions { use special rules to evaluate the arguments, the function is
then applied to the arguments or values.

We will call the object present to a call to a function the supplied arguments. We call
the values upon which the computation is performed, the actual arguments.

