
CIS681 { Arti�cial Intelligence { Some Lisp Style Remarks

Just a word on what the functions you hand in should look like.

� Indent code to re
ect level of nesting of parenthesis. Otherwise it is impossible to
read { if you put that setenv thing in your .login �le vi will do a pretty good job of
getting the indentation right. Conventions:

� Make code re
ect the way you think about the problem { recursively! Each function
usually consists of a conditional checking base conditions and then a recursive call {
usually cons the car onto result of doing function to rest of list.

� Variable and function names should be well-chosen (descriptive)

� Use special names for global variables (e.g., *data*).

� Use global variables only when they are the clearest way to do things (e.g., as
pointers to a global data base).

� Stress functional embedding. Avoid temp or local variables. \The judicious use of
LET and functional embedding can remove the need for most instances of SETQ.
Doing this is considered the mark of an expert lisp programmer."

� Keep functions short. Break up large functions into several logically self-contained
programs. This will make testing and debugging much easier!

� COMMENT CODE! Each function should have a block comment in the beginning
explaining what kind of input arguments are expected, and what is returned. In the
code, anything tricky should have a comment. Another mark of a good lisp
programmer is to be able to look at a system written years before and �gure out how
it works in 5 minutes { �nd functions to borrow etc...

Testing Functions

When you hand in your code, you will want to show that the code actually works. The
following function will help you and is included in the lisp-init.lisp �le on the composers.

(defun print-eval (l)

(mapcar (function (lambda (ele)

(print ele)

(terpri)

(print (eval ele))

(terpri)

(terpri)

))

l))

(print-eval '(

; put whatever expressions you want to test here

))

1


