N-Grams and Corpus
Linguistics

Lecture #4

September 6, 2012

Transition

« Up to this point we've mostly been discussing words
in isolation

« Now we’re switching to sequences of words

« And we're going to worry about assigning
probabilities to sequences of words

Who Cares?

* Why would you want to assign a probability to a
sentence of...

« Why would you want to predict the next word...

 Lots of applications

Real-Word Spelling Errors

* Mental confusions
— Their/they're/there
— Toltoo/two
— Weather/whether
— Peace/piece
— You're/your
« Typos that result in real words
— Lave for Have

Real Word Spelling Errors

¢ Collect a set of common pairs of confusions

* Whenever a member of this set is encountered
compute the probability of the sentence in which it
appears

* Substitute the other possibilities and compute the
probability of the resulting sentence

¢ Choose the higher one

Next Word Prediction

* From a NY Times story...
— Stocks ...
— Stocks plunged this ....
— Stocks plunged this morning, despite a cut in interest rates

— Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall ...

— Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began




— Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began trading for the
first time since last ...

— Stocks plunged this morning, despite a cut in interest rates

by the Federal Reserve, as Wall Street began trading for the
first time since last Tuesday's terrorist attacks.

Wora Prealctlon

= Guess the next word...
= ... | notice three guys standing on the ??7?

= There are many sources of knowledge
that can be used to inform this task,
including arbitrary world knowledge.

= But it turns out that you can do pretty well
by simply looking at the preceding words
and keeping track of some fairly simple
counts.
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N-Gram Moaels

= More formally, we can use knowledge of
the counts of A-grams to assess the
conditional probability of candidate words
as the next word in a sequence.

= Or, we can use them to assess the
probability of an entire sequence of words.
= Pretty much the same thing as we’'ll see...
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Human Word Prediction

« Clearly, at least some of us have the ability to predict
future words in an utterance.
e How?
— Domain knowledge
— Syntactic knowledge
— Lexical knowledge

Wora Prealctlon

= We can formalize this task using what are
called A-gram models.

= N-grams are token sequences of length N.

= Qur earlier example contains the following

2-grams (aka bigrams)

= (I notice), (notice three), (three guys), (guys
standing), (standing on), (on the)

Given knowledge of counts of N-grams such

as these, we can guess likely next words in

a sequence.
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Applications

* Why do we want to predict a word, given some
preceding words?
— Rank the likelihood of sequences containing various
alternative hypotheses, e.g. for ASR
Theatre owners say popcorn/unicorn sales have doubled...

— Assess the likelihood/goodness of a sentence, e.g. for text
generation or machine translation

The doctor recommended a cat scan.
El doctor recommendé una exploracion del gato.




N-Gram Models of Language

* Use the previous N-1 words in a sequence to predict
the next word

« Language Model (LM)
— unigrams, bigrams, trigrams,...

* How do we train these models?
— Very large corpora

Terminology

» Sentence: unit of written language

« Utterance: unit of spoken language

* Word Form: the inflected form that appears in the
corpus

e Lemma: an abstract form, shared by word forms
having the same stem, part of speech, and word
sense

* Types: number of distinct words in a corpus
(vocabulary size)

* Tokens: total number of words

Corpora

» Corpora are online collections of text and speech
— Brown Corpus
— Wall Street Journal
— AP news
— Hansards

— DARPA/NIST text/speech corpora (Call Home, ATIS,
switchboard, Broadcast News, TDT, Communicator)

— TRAINS, Radio News

Counting Words in Corpora

* What is a word?
— e.g., are cat and cats the same word?
— September and Sept?
— zero and oh?
— Is_aword? *? (" ?
— How many words are there in don't ? Gonna ?
— In Japanese and Chinese text -- how do we identify a word?

Eoun!lng: Eorpora

= So what happens when we look at large bodies
of text instead of single utterances?

= Brown et al (1992) large corpus of English text
= 583 million wordform tokens
= 293,181 wordform types

= Google
= Crawl of 1,024,908,267,229 English tokens
= 13,588,391 wordform types

= That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?
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Eanguage Hoaellng

= Back to word prediction

= We can model the word prediction task as
the ability to assess the conditional
probability of a word given the previous
words in the sequence
= P(W, Wy, Wy Wy )

= We'll call a statistical model that can
assess this a Language Model
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Eanguage Mogelmg

= How might we go about calculating such a
conditional probability?

= One way is to use the definition of conditional
probabilities and look for counts. So to get

= P(the | its water is so transparent that)
= By definition that’s
P(its water is so transparent that the)
P(its water is so transparent that)

We can get each of those from counts in a large
corpus.
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Uery Easy Estlmate

= According to Google those counts are 5/9.
= Unfortunately... 2 of those were to these
slides... So maybe it’s really
= 3/7

= In any case, that's not terribly convincing due
to the small numbers involved.
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| ”e !”aln HU'G

= Recall the definition of conditional probabilities

P(AB)
= Rewriting: P(AIB)= P(B)

P(A"B)=P(A|B)P(B)
= For sequences...
= P(A,B,C,D) = P(A)P(B]A)P(C|A,B)P(D]A,B,C)
= |n general

= P(Xq,Xp,Xg,...Xp) =
P(x)P(XalX1)P(Xg|X1,X5)..P(Xn X1 Xp.0)
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!ery Easy Es!lma!e

= How to estimate?
= P(the | its water is so transparent that)

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
Count(its water is so transparent that)
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Eanguage Hoaelmg

= Unfortunately, for most sequences and for
most text collections we won't get good
estimates from this method.
= What we're likely to get is 0. Or worse 0/0.

= Clearly, we'll have to be a little more
clever.
= Let's use the chain rule of probability

= And a particularly useful independence
assumption.
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|”e !”am Eule

P(wl) = Pwp)P(wa|wy)P(ws h-'%) . ,P{h',,|l|-J]'_| )

= l_[ P( u-‘i.|\\J]"_1 )
k=1

P(its water was so transparent)=
P(its)*
P(water]its)*
P(was|its water)*
P(solits water was)*
P(transparent|its water was so)
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Example

» The big red dog

P(The)*P(big|the)*P(red|the big)*P(dog|the big red)

Better P(The| <Beginning of sentence>) written as
P(The | <S>)

General Case

* The word sequence from position 1 to n is N
* So the probability of a sequence is W1

P(W") = P(wi) P (W2 | wi) P(Wa | W?2)...P(wn | w™)
=P(w) [T, P(we|w™)

Unfortunately

» That doesn't help since its unlikely we’ll ever gather
the right statistics for the prefixes.

Markov Assumption

« Assume that the entire prefix history isn’t necessary.

« In other words, an event doesn’t depend on all of its
history, just a fixed length near history

Markov Assumption

« So for each component in the product replace each
with the approximation (assuming a prefix of N)

P (W | W) = P(Wn| Wy,

N-Grams
The big red dog
« Unigrams: P(dog)
* Bigrams: P(dog|red)
e Trigrams: P(dog|big red)
« Four-grams: P(dog|the big red)

In general, we'll be dealing with
P(Word| Some fixed prefix)




Caveat

e The formulation pP(word| Some fixed prefix) iS not really
appropriate in many applications.

e ltis if we're dealing with real time speech where we
only have access to prefixes.

« But if we're dealing with text we already have the
right and left contexts. There’s no a priori reason to
stick to left contexts.

Training and Testing

* N-Gram probabilities come from a training corpus
— overly narrow corpus: probabilities don't generalize
— overly general corpus: probabilities don't reflect task or
domain
= A separate test corpus is used to evaluate the model,
typically using standard metrics
— held out test set; development test set
— cross validation
— results tested for statistical significance

A Simple Example

— P(l want to eat Chinese food) = P(I | <start>) P(want | I) P(to
| want) P(eat | to) P(Chinese | eat) P(food | Chinese)

A Bigram Grammar Fragment
from BERP

eat on .16 eat Thai .03
eat some .06 eat breakfast .03
eat lunch .06 eatin .02
eat dinner .05 eat Chinese .02
eat at .04 eat Mexican .02
eata .04 eat tomorrow .01
eat Indian .04 eat dessert .007
eat today .03 eat British .001

<start> | .25 want some .04
<start> I'd .06 want Thai .01
<start> Tell .04 to eat .26
<start>I'm .02 to have .14
| want .32 to spend .09
| would .29 to be .02
I don't .08 British food .60
| have .04 British restaurant .15
want to .65 British cuisine .01
want a .05 British lunch .01

* P(I want to eat British food) = P(l|<start>) P(want|l)
P(toJwant) P(eat|to) P(British|eat) P(food|British) =
.25*.32*.65*.26*.001*.60 = .000080

* vs. | want to eat Chinese food = .00015

« Probabilities seem to capture ““syntactic" facts,
““world knowledge"

— eat is often followed by an NP
— British food is not too popular

¢ N-gram models can be trained by counting and

normalization




An Aside on Logs

* You don't really do all those multiplies. The numbers
are too small and lead to underflows

« Convert the probabilities to logs and then do
additions.

* To get the real probability (if you need it) go back to
the antilog.

™ Estmating Bigram |

Probabilities
= The Maximum Likelihood Estimate (MLE)

P(W, W, ,) = count(w, ,,w,)
count(w, ,)
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[
Maximum Likelihood Estimates

= The maximum likelihood estimate of some parameter of

a model M from a training set T

= |s the estimate that maximizes the likelihood of the training set
T given the model M

Suppose the word Chinese occurs 400 times in a corpus

of a million words (Brown corpus)

= What is the probability that a random word from some
other text from the same distribution will be “Chinese”

= MLE estimate is 400/1000000 = .004

= This may be a bad estimate for some other corpus

But it is the estimate that makes it most likely that

“Chinese” will occur 400 times in a million word corpus.
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How do we get the N-gram
probabilities?

¢ N-gram models can be trained by counting and
normalization

mmpe

= <s> | am Sam </s>
= <s> Sam | am </s>
= <s> | do not like green eggs and ham </s>

P(I|<sz)=3= 67 P(Sam|<s>)=1=33 Plam|I)=]=67
Pl</s>|sam)=1=05 Psam|am)=1=5  Pldo|T)=1=33

=l
COvnWn)

1
P(“"rr|“’:: \"+1} =
=i =1
C(M'u N+ l}
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[Berkeley Restaurant Projct |

Sentences

= can you tell me about any good cantonese restaurants
close by

= mid priced thai food is what /m looking for

= tell me about chez panisse

= can you give me a listing of the kinds of food that are
avallable

= /m looking for a good place to eat breakfast
= when is caffe venezia open during the day
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BERP Bigram Counts BERP Bigram Probabilities

I want [to |eat |Chinese |food |lunch « Normalization: divide each row's counts by
| s 1087 1o 11z To o o appropriate unigram counts for w,,_;
want 3 0 786 |0 6 8 6 | want |to eat |Chinese |[food |[lunch
to 3 10 10 |860 |3 0 12 3437 |1215 |3256 |938 |213 1506 |459
eat 0 |0 2 |0 |19 2 52 » Computing the bigram probability of I |
Chinese |2 [0 o Jo Jo 120 |1 - C{.h/Cliln)
ood - p(|l) =8/3437 =.0023
00 19 |0 17 |0 |0 0 0 A - L .
¢ Maximum Likelihood Estimation (MLE): relative
lunch 4 |0 0 0 0 1 0 frequency of e.g.
freq(wwz)
freq(w)
43 44

. _ What do we learn about the
BERP Table: Bigram Probabilities
language?
_ e What's being captured with ...
I want| to eat Chinese| food lunch
— P(want|1)=.32
I 0023 [ 32 [ 0 0038 0 0 0 — P(to| want) = 65
want 0025 | 0 65 0 .0049 .0066| .0049 _ Pleat|t0) = .26
to .00092| 0 0031| 26 00092 | 0 .0037, -
eat 0 0 0021 0 020 0021|055 ~ P(food | Chinese) = .56
Chinese|| .0094 | 0 0 0 0 .56 0047 — P(lunch | eat) = .055
food 013 0 011 ] 0 0 0 0 « What about...
lunch 0087 | 0 0 0 0 .0022| 0 ~ P(1)=.0023
— P(I'| want) =.0025
— P(I| food) =.013
45 46

Klnas o! Knowleage

= As crude as they are, A-gram probabilities
capture a range of interesting facts about
— P(I1)=.0023 111 want

— P(I] want) =.0025 | want | want language.
— P(I | food) = .013 the kind of food | want is ... = P(englishjwant) = .0011

= P(chinese|want) = .0065
= P(to|want) = .66

= P(eat | to) = .28
= P(food | to) =0

= P(want | spend) =0

= P(i]| <s>)=.25

World knowledge
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!l !annon S He!l !05

= Assigning probabilities to sentences is all
well and good, but it’s not terribly
illuminating . A more interesting task is to
turn the model around and use it to
generate random sentences that are /ke
the sentences from which the model was
derived.

= Generally attributed to
Claude Shannon.
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!I !aEeSpeare

1 swallowed confess hear both, Wiich. OF save on trl for are ay deviee
nd rote life have

Sy enler now seve:
» Hill e late speaks; or! a more 1o leg bess first you enter
» Are where exeumt and sighs have rse excellency took of . Sleep knave we, near,
vile like
* What meeans, sie. | contess she™ then all sorts, he is mm, eaptain.
#Why dost stand forth thy canopy, forsooth; he is this palpable hat the King Henry.
Live king. Follow.
#What we, hath got so she that 1 rest and sent to scold and naruse bankrupr, nor the
first gentleman”
*Euter Menenius, if it s many good direction found st thou art a sIFong upon om-
smand of fear not a liberal largess given away, Falstaff! Exeunt
@ Sweer prnce. Falsaft shall dee. Harry of Monmouh's prave.
This shall forbid it should be branded, if remown made it empty.
Indeed the duke; and had a very good friend.
» Fly, and will rid me these ews of price. Therefore the sadness of paming, as they
say. 'tis done.
» King Henry, What! [ will go seekt the trastor Gloncester. Exent some of the |

L A great banguet sery'd in:

Bigram

Trigram

* Will you not tell nve who 1 am?
o It cannot be bt 3o,
» Indeed the short and the long. Marey, ‘s a noble Lepidis.

Quadrigram
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Shakespeare

nnigram; Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire 1o six executives

bigram: Last December through the way to preserve the Hudson corporation
N. B. E. C. Taylor would seem to complete the major central planners one
point five percent of U, S, E. has already old M. X. corporation of living on
information such as more frequently fishing to keep her

trigram: They also point to ninety nine point six billion dollars from two
hundred four oh six three percent of the rates of interest stores as Mexico and
Brazil on market conditions
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!l !annon S He!l !05

= Sample a random bigram (<s>, w) according to its probability
= Now sample a random bigram (w, x) according to its probability
= Where the prefix w matches the suffix of the first.

= And so on until we randomly choose a (y, </s>)
= Then string the words together

<s>1
I want
want to
to eat
eat Chinese
Chinese food
food </s>
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!”a!espeare as a !orpus

= N=884,647 tokens, V=29,066
= Shakespeare produced 300,000 bigram types
out of V2= 844 million possible bigrams...
= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)
= This is the biggest problem in language modeling;
we'll come back to it.
= Quadrigrams are worse: What's coming out
looks like Shakespeare because it /s
Shakespeare
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Evalua!lon

= How do we know if our models are any
good?
= And in particular, how do we know if one
model is better than another.
= Well Shannon’s game gives us an
intuition.
= The generated texts from the higher order
models sure look better. That is, they sound
more like the text the model was obtained
from.

= But what does that mean? Can we make that
notion operational?
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Evaluatlon

= Standard method
= Train parameters of our model on a training set.

= Look at the models performance on some new data
= This is exactly what happens in the real world; we want to
know how our model performs on data we haven't seen
= So use a test set. A dataset which is different than
our training set, but is drawn from the same source
= Then we need an evaluation metric to tell us how
well our model is doing on the test set.
= One such metric is perplexity (to be introduced below)
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Pe rpleX|ty

= Perplexity is the probability of PP(W) = Plwiwy. . wy) ¥
the test set (assigned by the o 1 )
language model), normalized by =\ Pl oy
the number of words: ;

: 1
. - W
Chain rule:  pp(w) \h'! = T——

= For bigrams: [~ ;
L T |

= Minimizing perplexity is the same as maximizing
probability

= The best language model is one that best
predicts an unseen test set
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Evaluatlng H—gram |U|an|8

» Best evaluation for a language model
= Put model A into an application
= For example, a speech recognizer

= Evaluate the performance of the
application with model A

= Put model B into the application and
evaluate

= Compare performance of the application
with the two models

= Extrinsic evaluation
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UnEnown Woras

= But once we start looking at test data,
we'll run into words that we haven’t seen
before (pretty much regardless of how
much training data you have.

= With an Open Vocabulary task
= Create an unknown word token <UNK>
= Training of <UNK> probabilities
= Create a fixed lexicon L, of size V
= From a dictionary or
= A subset of terms from the training set

= At text normalization phase, any training word not in L changed to
<UNK>

= Now we count that like a normal word
= At test time
= Use UNK counts for any word not in training
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better model

= Training 38 million words, test 1.5 million
words, WSJ

N-gram Order || Unigram | Bigram | Trigram
Perplexity 962 170 109

9/5/2012 ‘Speech and Language Processing - Jurafsky and Martin 58

evaluation of N-gram models

= Extrinsic evaluation
= This is really time-consuming
= Can take days to run an experiment
= So
= As a temporary solution, in order to run experiments
= To evaluate N-grams we often use an intrinsic
evaluation, an approximation called perplexity
= But perplexity is a poor approximation unless the test
data looks just like the training data
= So is generally only useful in pilot experiments
(generally is not sufficient to publish)
= But s helpful to think about.
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= Back to Shakespeare
= Recall that Shakespeare produced 300,000 bigram
types out of V2= 844 million possible bigrams...
= S0, 99.96% of the possible bigrams were never seen
(have zero entries in the table)
= Does that mean that any sentence that contains one
of those bigrams should have a probability of 0?
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Zero Eounts

61

Zero Counts

= Some of those zeros are really zeros...
= Things that really can't or shouldn’t happen.
= On the other hand, some of them are just rare events.

= If the training corpus had been a little bigger they would have had a
count (probably a count of 1!).

= Zipf's Law (long tail phenomenon):
= A small number of events occur with high frequency
= A large number of events occur with low frequency
= You can quickly collect statistics on the high frequency events

= You might have to wait an arbitrarily long time to get valid statistics
on low frequency events

= Result:

= Our estimates are sparse! We have no counts at all for the vast bulk
of things we want to estimate!

= Answer:
= Estimate the likelihood of unseen (zero count) N-grams!
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Smoothing Techniques

» Every n-gram training matrix is sparse, even for very
large corpora (Zipf's law)

¢ Solution: estimate the likelihood of unseen n-grams

* Problems: how do you adjust the rest of the corpus
to accommodate these ‘phantom’ n-grams?

Problem

e Let's assume we're using N-grams

* How can we assign a probability to a sequence
where one of the component n-grams has a value of
zero

« Assume all the words are known and have been seen
— Go to a lower order n-gram
— Back off from bigrams to unigrams
— Replace the zero with something else

Add-One (Laplace)

» Make the zero counts 1.

» Rationale: They're just events you haven't seen yet. If
you had seen them, chances are you would only
have seen them once... so make the count equal to
1.

Add-one Smoothing

e For unigrams:
— Add 1 to every word (type) count
— Normalize by N (tokens) /(N (tokens) +V (types))
— Smoothed count (adjusted for additions to N) is

c+1
) [ }N +V .
— Normalize by N to get the new unigram probability:

) P = c+1
¢ For bigrams: I N+V

— Add 1 to every bigram c(w,_, w,) + 1

— Incr unigram count by vocabulary size c(w,,;) +V

11



Original BERP Counts

I want to eat Chinese food lunch|
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0
67
BERP After Add-One
was .65
I want | to eat Chinese| food lunch
1 0018 | .22 .000201-0028 | .00020 | .00020[ .00020
want .0014 | .00035 ®/ .00035| .0025 .0032 | .0025
to .00082| .00021| .0023 | .18 .00082 | .00021| .0027
eat .00039| .00039| .0012 | .00039| .0078 .0012 | .021
Chinese || .0016 | .00055| .00055| .00055| .00055 | .066 .0011
food .0064 | .00032| .0058 | .00032| .00032 | .00032| .00032
lunch .0024 | .00048| .00048| .00048| .00048 | .00096| .00048]

BERP Table: Bigram Probabilities

1 want| to eat Chinese| food | lunch
1 .0023 32 0 .0038| 0 0 0
want 0025 | 0 .65 0 .0049 .0066| .0049
to .00092| 0 0031 .26 00092 | 0 .0037
eat 0 0 .0021| 0 .020 .0021| .055
Chinese | .0094 | 0 0 0 0 .56 .0047
food 013 0 011 0 0 0 0
lunch .0087 | 0 0 0 0 .0022| 0

Add-One Smoothed BERP

Reconstituted
1 want| to eat Chinese food|  lunch
T 6 740 .68 10 .68 .68 .68
want 2 42 331 42 3 4 3
to 3 .69 8 594 3 .69 9
eat 37 37 1 37 7.4 1 20
Chinese 36 12 12 12 12 15 24
food 10 A48 9 A48 48 A8 48
lunch 1.1 22 22 22 22 44 22

— Discount: ratio of new counts to old (e.g. add-one smoothing
changes the BERP count (to|want) from 786 to 331 (d.=.42)
and p(tolwant) from .65 to .28)

— Problem: add one smoothing changes counts drastically:
< too much weight given to unseen ngrams
« in practice, unsmoothed bigrams often work better!

Better Smoothing

= |ntuition used by many smoothing
= Good-Turing
= Kneser-Ney

= |s to use the count of things we've seen
once to help estimate the count of things

algorithms ! i ﬁ
= Witten-Bell
we've never seen
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Good-Tur |||5 !ooa—!urlng

Josh Goodman Intuition
= Imagine you are fishing = Notation: N, is the frequency-of-frequency-x
= There are 8 species: carp, perch, whitefish, trout, = S0 N;p=1
salmon, eel, catfish, bass = Number of fish species seen 10 times is 1 (carp)
* You have caught = N,;=3 4 . ,
= 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel . NLfmber of fish species seen 1 is 3 (trout, salmon, e-el)
= 18 fish = To estimate total number of unseen species
= How likely is it that the next fish caught is from = Use number of species (words) we've seen once
a new species (one not seen in our previous "Cy"=C, Py =Ny/N & =(c+ I)N‘“
catch)? N,
v 318 o o = All other estimates are adjusted (down) to give
= Assuming so, how likely is it that next species is probabilities for unseen
trout?
= Must be less than 1/18
9512012 Slide adapted from Josh Gogdman. . .. 7 o15/2012 e —— 74

EOOH- I uring In!m!lon E I !IS” Example

= Notation: N, is the frequency-of-frequency-x
= So Nyp=1, N,=3, etc

= To estimate total number of unseen species unseen (bass or catfish) trout
= Use number of species (words) we've seen once ¢ 0 1
- _ 0 _ 1
= cy'=c; P = Ni/N p,=N,/N=3/18 MLEp |p=g=0 b
N * Ny
Pfp (things with frequency zero in training) = ‘TI c* e*(trout)= 2 = %T =2x -E = .67
GTp(‘?,T pGrlunseen) = 1\1- = I'—‘s =.17 Pepitrout) = % = :]_'.' = 037

= All other estimates are adjusted (down) to give
probabilities for unseen

= C*| = (1+ =
. Noy1 Peel) = c*(1) = (1+1) 1/ 3= 213
¢ =(c+1)
N,
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! | !ompllca!lons

Frequencies and

GT Re-eSti mateS = In practice, assume large counts (c>k for some k) are reliable:
¢ =c fore>k

AP Newswire [l Berkeley Restaurant— = That complicates c*, making it:
¢ (MLE) No e (GT) ¢ (MLE) N, (GT) ~
0 74,671,100,000  0.0000270 0 2081496 0.002553 . & N
1 2018046 0446 1 5315 0.533960 (e+1) N—R}—‘ - ('il}\,-ﬂ
2 449721 126 2 1419 1,357294 ¢ = - L forl<ec<k.
3 188,933 224 3 642 2373832 1-— %
1 105,668 324 4 381 4081365 !
5 68,379 422 5 311 3781350
6 48,190 519 6 196 4.500000 = Also: we assume singleton counts c=1 are unreliable, so treat N-

grams with count of 1 as if they were count=0

= Also, need the Nk to be non-zero, so we need to smooth
(interpolate) the Nk counts before computing c* from them
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!&CEO' | ana | n !erpola!lon

= Another really useful source of knowledge
= |f we are estimating:
= trigram p(z|x,y)
= but count(xyz) is zero
= Use info from:
= Bigram p(z|y)
= Or even:
= Unigram p(z)
= How to combine this trigram, bigram,
unigram info in a valid fashion?
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In!erpo'a!lon

= Simple interpolation

Plwylwyiwaoz) = RPlwy[wy_pwa_2)
+haP{wy w1 ) E)" -1
+hiP(wy) !

= Lambdas conditional on context:

Plwgwy_awyog) = A (Wi DPlw,wo_aw, 1)
A wy ;]P{ Wy Wiy )

+halwt=L)P(w,)
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!a!z EachI |

; P v, EC0xs1) > 0

y Cil

Phara( M) = ach, DAk, otherwise,
Pt{z|x,v), f Clewz) >0

Pearz () [ ¥,z (2lv),  elseif Clx,y) >0
Poz), otherwise.
P*(zlv), ifClyz) >0
catz (2D = f
Tz a(y)P(z), otherwise.
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acKko S. Interpolation

= Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram

= Interpolation: mix all three
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Oow 10 o>e e Lambaas:

= Use a held-out, or development, corpus
= Choose lambdas which maximize the

probability of some held-out data

= |.e. fix the A-gram probabilities

= Then search for lambda values

= That when plugged into previous equation

= Give largest probability for held-out set

= Can use EM to do this search
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UU”y HISCOUHES !!! anH alp”a!

= MLE probabilities sum to 1
> Plwilwwg) =1
i

= So if we used MLE probabilities but backed off to
lower order model when MLE prob is zero

= We would be adding extra probability mass

= And total probability would be greater than 1

‘i
; i1 LA \sY)
Prlwalwi_y) =
wn_nypr)
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[ GT Smoothed Bigram |

Probabilities

= v | o e | chinese | food
1 | 0.0014 0.00248 0.00355 0000205 0.0017
want 000134 0,686 0.000483 000458 000455
o 0000512 000165 0.254 0.000512 00017
ean 000101 000166 0.00189 0.0214 0.00166
chinese 0.00283 0.00248 0.00189 0.000205 0519
food 001¥ 0.0137 0.00189 0.000409 0.00366
lunch 000363 0.00248 0.00189 0.000205 0.00131
apend 0.00161 0.00161 0.00189 0.000205 0.0017

555 WOI’HSZ <H|!E> WOFH

= Qut Of Vocabulary = OOV words

= We don't use GT smoothing for these
= Because GT assumes we know the number of unseen events
= Instead: create an unknown word token <UNK>
= Training of <UNK> probabilities
= Create a fixed lexicon L of size V

= At text normalization phase, any training word not in L changed to
<UNK>

= Now we train its probabilities like a normal word
= At decoding time
= If text input: Use UNK probabilities for any word not in training
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EOOg'G H—Eram !elease

All Our N-gram are Belong to You
By Peter Norvig - B/03/2006 11:26:00 AM

Posted by Alex Franz and Thorsten Brants, Google Machine Translation
Team

Here at Google Research we have been using word n-gram models for a
variety of R&D projects, such as statistical machine translation, speech
recognition, spelling correction, entity detection, information extraction,
and others. While such models have usually been estimated from training

10 share this enormous dataset with everyone. We processed
1,024,908,267,229 words of running text and are publishing the counts
for all 1,176,470,663 five-word sequences that appear at least 40 times,
There are 13,588,381 unique words, after discarding words that appear
less than 200 times
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Backoff+Discounting

= How much probability to assign to all the
zero trigrams?
= Use GT or other discounting algorithm to tell

us

= How to divide that probability mass
among different contexts?
= Use the N-1 gram estimates to tell us

= What do we do for the unigram words not
seen in training?
= Out Of Vocabulary = OOV words
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!rac!ma' I ssues

= We do everything in log space
= Avoid underflow
= (also adding is faster than multiplying)

P1 % p2 X p3 X ps = exp(log p1 + log p2 + log p3 +log p4)
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Eoogle I!—Eram !elease

= serve as the incoming 92

" serve as the incubator 99

®= serve as the independent 794

" serve as the index 223

" serve as the indication 72

" serve as the indicator 120

= serve as the indicators 45

" serve as the indispensable 111
= gserve as the indispensible 40
" serve as the individual 234
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5009|e Eaveat

= Remember the lesson about test sets and
training sets... Test sets should be similar
to the training set (drawn from the same
distribution) for the probabilities to be
meaningful.

= So... The Google corpus is fine if your
application deals with arbitrary English
text on the Web.

= |f not then a smaller domain specific
corpus is likely to yield better results.
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Summary

* N-gram probabilities can be used to estimate the
likelihood
— Of aword occurring in a context (N-1)
— Of a sentence occurring at all
« Smoothing techniques deal with problems of unseen
words in a corpus

16



