
1

N-Grams and Corpus
Linguistics

1

September 6, 2012

Lecture #4

Transition

• Up to this point we’ve mostly been discussing words
in isolation

• Now we’re switching to sequences of words

• And we’re going to worry about assigning
b biliti t f d

2

probabilities to sequences of words

Who Cares?

• Why would you want to assign a probability to a
sentence or…

• Why would you want to predict the next word…

3

• Lots of applications

Real-Word Spelling Errors

• Mental confusions
– Their/they’re/there

– To/too/two

– Weather/whether

– Peace/piece

4

– Peace/piece

– You’re/your

• Typos that result in real words
– Lave for Have

Real Word Spelling Errors

• Collect a set of common pairs of confusions
• Whenever a member of this set is encountered

compute the probability of the sentence in which it
appears

• Substitute the other possibilities and compute the

5

Substitute the other possibilities and compute the
probability of the resulting sentence

• Choose the higher one

Next Word Prediction

• From a NY Times story...
– Stocks ...

– Stocks plunged this ….

– Stocks plunged this morning, despite a cut in interest rates

– Stocks plunged this morning despite a cut in interest rates

6

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall ...

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began

2

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began trading for the
first time since last …

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began trading for the
first time since last Tuesday's terrorist attacks.

7

Human Word Prediction

• Clearly, at least some of us have the ability to predict
future words in an utterance.

• How?
– Domain knowledge

S t ti k l d

8

– Syntactic knowledge

– Lexical knowledge

Word Prediction

 Guess the next word...
 ... I notice three guys standing on the ???

 There are many sources of knowledge
that can be used to inform this task,

9/5/2012 Speech and Language Processing - Jurafsky and Martin 9

including arbitrary world knowledge.
 But it turns out that you can do pretty well

by simply looking at the preceding words
and keeping track of some fairly simple
counts.

Word Prediction

 We can formalize this task using what are
called N-gram models.
 N-grams are token sequences of length N.
 Our earlier example contains the following

9/5/2012 Speech and Language Processing - Jurafsky and Martin 10

2-grams (aka bigrams)
 (I notice), (notice three), (three guys), (guys

standing), (standing on), (on the)

 Given knowledge of counts of N-grams such
as these, we can guess likely next words in
a sequence.

N-Gram Models

 More formally, we can use knowledge of
the counts of N-grams to assess the
conditional probability of candidate words
as the next word in a sequence.
O h h

9/5/2012 Speech and Language Processing - Jurafsky and Martin 11

 Or, we can use them to assess the
probability of an entire sequence of words.
 Pretty much the same thing as we’ll see...

Applications

• Why do we want to predict a word, given some
preceding words?
– Rank the likelihood of sequences containing various

alternative hypotheses, e.g. for ASR

Theatre owners say popcorn/unicorn sales have doubled...

12

Theatre owners say popcorn/unicorn sales have doubled...

– Assess the likelihood/goodness of a sentence, e.g. for text
generation or machine translation

The doctor recommended a cat scan.

El doctor recommendó una exploración del gato.

3

N-Gram Models of Language

• Use the previous N-1 words in a sequence to predict
the next word

• Language Model (LM)
– unigrams, bigrams, trigrams,…

H d t i th d l ?

13

• How do we train these models?
– Very large corpora

Counting Words in Corpora

• What is a word?
– e.g., are cat and cats the same word?

– September and Sept?

– zero and oh?

– Is a word? * ? ‘(‘ ?

14

– Is _ a word? ? (?

– How many words are there in don’t ? Gonna ?

– In Japanese and Chinese text -- how do we identify a word?

Terminology
• Sentence: unit of written language

• Utterance: unit of spoken language

• Word Form: the inflected form that appears in the
corpus

• Lemma: an abstract form shared by word forms

15

Lemma: an abstract form, shared by word forms
having the same stem, part of speech, and word
sense

• Types: number of distinct words in a corpus
(vocabulary size)

• Tokens: total number of words

Counting: Corpora

 So what happens when we look at large bodies
of text instead of single utterances?

 Brown et al (1992) large corpus of English text
 583 million wordform tokens
 293,181 wordform types

 Google

9/5/2012 Speech and Language Processing - Jurafsky and Martin 16

Goog e
 Crawl of 1,024,908,267,229 English tokens
 13,588,391 wordform types

 That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?

•Numbers
•Misspellings
•Names
•Acronyms
•etc

Corpora

• Corpora are online collections of text and speech
– Brown Corpus

– Wall Street Journal

– AP news

– Hansards

17

– Hansards

– DARPA/NIST text/speech corpora (Call Home, ATIS,
switchboard, Broadcast News, TDT, Communicator)

– TRAINS, Radio News

Language Modeling

 Back to word prediction
 We can model the word prediction task as

the ability to assess the conditional
probability of a word given the previous
words in the sequence

9/5/2012 Speech and Language Processing - Jurafsky and Martin 18

words in the sequence
 P(wn|w1,w2…wn-1)

 We’ll call a statistical model that can
assess this a Language Model

4

Language Modeling

 How might we go about calculating such a
conditional probability?
 One way is to use the definition of conditional

probabilities and look for counts. So to get
P(the | its water is so transparent that)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 19

 P(the | its water is so transparent that)
 By definition that’s

P(its water is so transparent that the)
P(its water is so transparent that)

We can get each of those from counts in a large
corpus.

Very Easy Estimate

 How to estimate?
 P(the | its water is so transparent that)

P(the | its water is so transparent that) =

9/5/2012 Speech and Language Processing - Jurafsky and Martin 20

Count(its water is so transparent that the)
Count(its water is so transparent that)

Very Easy Estimate

 According to Google those counts are 5/9.
 Unfortunately... 2 of those were to these

slides... So maybe it’s really
 3/7

I th t’ t t ibl i i d

9/5/2012 Speech and Language Processing - Jurafsky and Martin 21

 In any case, that’s not terribly convincing due
to the small numbers involved.

Language Modeling

 Unfortunately, for most sequences and for
most text collections we won’t get good
estimates from this method.
 What we’re likely to get is 0. Or worse 0/0.

9/5/2012 Speech and Language Processing - Jurafsky and Martin 22

 Clearly, we’ll have to be a little more
clever.
 Let’s use the chain rule of probability
 And a particularly useful independence

assumption.

The Chain Rule

 Recall the definition of conditional probabilities

 Rewriting:)(

)^(
)|(

BP

BAP
BAP 

9/5/2012 Speech and Language Processing - Jurafsky and Martin 23

 For sequences...
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

 In general
 P(x1,x2,x3,…xn) =

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)()|()^(BPBAPBAP 

The Chain Rule

P(its water was so transparent)=

9/5/2012 Speech and Language Processing - Jurafsky and Martin 24

P(its)*
P(water|its)*

P(was|its water)*
P(so|its water was)*

P(transparent|its water was so)

5

Example

• The big red dog

• P(The)*P(big|the)*P(red|the big)*P(dog|the big red)

25

• Better P(The| <Beginning of sentence>) written as

P(The | <S>)

General Case

• The word sequence from position 1 to n is

• So the probability of a sequence is
nw

1

)|()|()|()()(12 nn wwPwwPwwPwPwP

26

)|()(

)|()...|()|()()(

1
12

1

1131211





k

k
n

k

n

wwPwP

wwPwwPwwPwPwP

Unfortunately

• That doesn’t help since its unlikely we’ll ever gather
the right statistics for the prefixes.

27

Markov Assumption

• Assume that the entire prefix history isn’t necessary.

• In other words, an event doesn’t depend on all of its
history, just a fixed length near history

28

Markov Assumption

• So for each component in the product replace each
with the approximation (assuming a prefix of N)

29

)|()|(1
1

1
1




  n
Nnn

n
n wwPwwP

N-Grams
The big red dog

• Unigrams: P(dog)

• Bigrams: P(dog|red)

• Trigrams: P(dog|big red)

• Four-grams: P(dog|the big red)

30

In general, we’ll be dealing with

P(Word| Some fixed prefix)

6

Caveat

• The formulation P(Word| Some fixed prefix) is not really
appropriate in many applications.

• It is if we’re dealing with real time speech where we
only have access to prefixes.

• But if we’re dealing with text we already have the

31

But if we re dealing with text we already have the
right and left contexts. There’s no a priori reason to
stick to left contexts.

Training and Testing

• N-Gram probabilities come from a training corpus
– overly narrow corpus: probabilities don't generalize

– overly general corpus: probabilities don't reflect task or
domain

• A separate test corpus is used to evaluate the model

32

A separate test corpus is used to evaluate the model,
typically using standard metrics
– held out test set; development test set

– cross validation

– results tested for statistical significance

A Simple Example

– P(I want to eat Chinese food) = P(I | <start>) P(want | I) P(to
| want) P(eat | to) P(Chinese | eat) P(food | Chinese)

33

A Bigram Grammar Fragment
from BERP

.02eat in.06eat lunch

.03eat breakfast.06eat some

.03eat Thai.16eat on

34

.001eat British.03eat today

.007eat dessert.04eat Indian

.01eat tomorrow.04eat a

.02eat Mexican.04eat at

.02eat Chinese.05eat dinner

.09to spend.32I want

.14to have.02<start> I’m

.26to eat.04<start> Tell

.01want Thai.06<start> I’d

.04want some.25<start> I

35

.01British lunch.05want a

.01British cuisine.65want to

.15British restaurant.04I have

.60British food.08I don’t

.02to be.29I would

• P(I want to eat British food) = P(I|<start>) P(want|I)
P(to|want) P(eat|to) P(British|eat) P(food|British) =
.25*.32*.65*.26*.001*.60 = .000080

• vs. I want to eat Chinese food = .00015

• Probabilities seem to capture ``syntactic'' facts,
``world knowledge''
– eat is often followed by an NP

36

y

– British food is not too popular

• N-gram models can be trained by counting and
normalization

7

An Aside on Logs

• You don’t really do all those multiplies. The numbers
are too small and lead to underflows

• Convert the probabilities to logs and then do
additions.

T t th l b bilit (if d it) b k t

37

• To get the real probability (if you need it) go back to
the antilog.

How do we get the N-gram
probabilities?

• N-gram models can be trained by counting and
normalization

38

Estimating Bigram
Probabilities

 The Maximum Likelihood Estimate (MLE)

P(w | w) 
count(wi1,wi)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 39

P(wi | wi1)  count(wi1)

An Example

 <s> I am Sam </s>
 <s> Sam I am </s>
 <s> I do not like green eggs and ham </s>

9/5/2012 Speech and Language Processing - Jurafsky and Martin 40

Maximum Likelihood Estimates

 The maximum likelihood estimate of some parameter of
a model M from a training set T
 Is the estimate that maximizes the likelihood of the training set

T given the model M
 Suppose the word Chinese occurs 400 times in a corpus

of a million words (Brown corpus)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 41

of a million words (Brown corpus)
 What is the probability that a random word from some

other text from the same distribution will be “Chinese”
 MLE estimate is 400/1000000 = .004

 This may be a bad estimate for some other corpus
 But it is the estimate that makes it most likely that

“Chinese” will occur 400 times in a million word corpus.

Berkeley Restaurant Project
Sentences

 can you tell me about any good cantonese restaurants
close by

 mid priced thai food is what i’m looking for
 tell me about chez panisse

9/5/2012 Speech and Language Processing - Jurafsky and Martin 42

 can you give me a listing of the kinds of food that are
available

 i’m looking for a good place to eat breakfast
 when is caffe venezia open during the day

8

BERP Bigram Counts

12038601003to

686078603want

00013010878I

lunchfoodChineseeattowantI

43

0100004lunch

000017019food

112000002Chinese

522190200eat

BERP Bigram Probabilities
• Normalization: divide each row's counts by

appropriate unigram counts for wn-1

4591506213938325612153437

lunchfoodChineseeattowantI

44

• Computing the bigram probability of I I
– C(I,I)/C(all I)

– p (I|I) = 8 / 3437 = .0023

• Maximum Likelihood Estimation (MLE): relative
frequency of e.g.

)(
)(

1

2,1

wfreq
wwfreq

BERP Table: Bigram Probabilities

45

What do we learn about the
language?

• What's being captured with ...
– P(want | I) = .32

– P(to | want) = .65

– P(eat | to) = .26

– P(food | Chinese) = 56

46

– P(food | Chinese) = .56

– P(lunch | eat) = .055

• What about...
– P(I | I) = .0023

– P(I | want) = .0025

– P(I | food) = .013

– P(I | I) = .0023 I I I I want

– P(I | want) = .0025 I want I want

– P(I | food) = .013 the kind of food I want is ...

47

Kinds of Knowledge

 P(english|want) = .0011
 P(chinese|want) = .0065

P(to|want) 66

 As crude as they are, N-gram probabilities
capture a range of interesting facts about
language.

World knowledge

9/5/2012 Speech and Language Processing - Jurafsky and Martin 48

 P(to|want) = .66
 P(eat | to) = .28
 P(food | to) = 0
 P(want | spend) = 0
 P (i | <s>) = .25

Syntax

Discourse

9

Shannon’s Method

 Assigning probabilities to sentences is all
well and good, but it’s not terribly
illuminating . A more interesting task is to
turn the model around and use it to
generate random sentences that are like

9/5/2012 Speech and Language Processing - Jurafsky and Martin 49

generate random sentences that are like
the sentences from which the model was
derived.
 Generally attributed to

Claude Shannon.

Shannon’s Method

 Sample a random bigram (<s>, w) according to its probability
 Now sample a random bigram (w, x) according to its probability

 Where the prefix w matches the suffix of the first.
 And so on until we randomly choose a (y, </s>)
 Then string the words together
 <s> I

I want

9/5/2012 Speech and Language Processing - Jurafsky and Martin 50

I want
want to

to eat
eat Chinese

Chinese food
food </s>

Shakespeare

9/5/2012 Speech and Language Processing - Jurafsky and Martin 51

Shakespeare as a Corpus

 N=884,647 tokens, V=29,066
 Shakespeare produced 300,000 bigram types

out of V2= 844 million possible bigrams...
 So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 52

()
 This is the biggest problem in language modeling;

we’ll come back to it.

 Quadrigrams are worse: What's coming out
looks like Shakespeare because it is
Shakespeare

The Wall Street Journal is Not
Shakespeare

9/5/2012 Speech and Language Processing - Jurafsky and Martin 53

Evaluation

 How do we know if our models are any
good?
 And in particular, how do we know if one

model is better than another.
 Well Shannon’s game gives us an

9/5/2012 Speech and Language Processing - Jurafsky and Martin 54

Well Shannon s game gives us an
intuition.
 The generated texts from the higher order

models sure look better. That is, they sound
more like the text the model was obtained
from.
 But what does that mean? Can we make that

notion operational?

10

Evaluation

 Standard method
 Train parameters of our model on a training set.
 Look at the models performance on some new data

 This is exactly what happens in the real world; we want to
know how our model performs on data we haven’t seen

 So use a test set. A dataset which is different than
b d f h

9/5/2012 Speech and Language Processing - Jurafsky and Martin 55

our training set, but is drawn from the same source
 Then we need an evaluation metric to tell us how

well our model is doing on the test set.
 One such metric is perplexity (to be introduced below)

Unknown Words

 But once we start looking at test data,
we’ll run into words that we haven’t seen
before (pretty much regardless of how
much training data you have.

 With an Open Vocabulary task

9/5/2012 Speech and Language Processing - Jurafsky and Martin 56

 Create an unknown word token <UNK>
 Training of <UNK> probabilities
 Create a fixed lexicon L, of size V
 From a dictionary or
 A subset of terms from the training set

 At text normalization phase, any training word not in L changed to
<UNK>

 Now we count that like a normal word
 At test time
 Use UNK counts for any word not in training

Perplexity

 Perplexity is the probability of
the test set (assigned by the
language model), normalized by
the number of words:

 Chain rule:

9/5/2012 Speech and Language Processing - Jurafsky and Martin 57

 For bigrams:

 Minimizing perplexity is the same as maximizing
probability
 The best language model is one that best

predicts an unseen test set

Lower perplexity means a
better model

 Training 38 million words, test 1.5 million
words, WSJ

9/5/2012 Speech and Language Processing - Jurafsky and Martin 58

Evaluating N-Gram Models

 Best evaluation for a language model
 Put model A into an application
 For example, a speech recognizer

 Evaluate the performance of the
li ti ith d l A

9/5/2012 Speech and Language Processing - Jurafsky and Martin 59

application with model A
 Put model B into the application and

evaluate
 Compare performance of the application

with the two models
 Extrinsic evaluation

Difficulty of extrinsic (in-vivo)
evaluation of N-gram models
 Extrinsic evaluation
 This is really time-consuming
 Can take days to run an experiment

 So
 As a temporary solution, in order to run experiments

9/5/2012 Speech and Language Processing - Jurafsky and Martin 60

 To evaluate N-grams we often use an intrinsic
evaluation, an approximation called perplexity

 But perplexity is a poor approximation unless the test
data looks just like the training data

 So is generally only useful in pilot experiments
(generally is not sufficient to publish)

 But is helpful to think about.

11

Zero Counts

 Back to Shakespeare
 Recall that Shakespeare produced 300,000 bigram

types out of V2= 844 million possible bigrams...
 So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 61

 Does that mean that any sentence that contains one
of those bigrams should have a probability of 0?

Zero Counts
 Some of those zeros are really zeros...

 Things that really can’t or shouldn’t happen.
 On the other hand, some of them are just rare events.

 If the training corpus had been a little bigger they would have had a
count (probably a count of 1!).

 Zipf’s Law (long tail phenomenon):
 A small number of events occur with high frequency

A large number of events occur with low frequency

9/5/2012 Speech and Language Processing - Jurafsky and Martin 62

 A large number of events occur with low frequency
 You can quickly collect statistics on the high frequency events
 You might have to wait an arbitrarily long time to get valid statistics

on low frequency events
 Result:

 Our estimates are sparse! We have no counts at all for the vast bulk
of things we want to estimate!

 Answer:
 Estimate the likelihood of unseen (zero count) N-grams!

Smoothing Techniques
• Every n-gram training matrix is sparse, even for very

large corpora (Zipf’s law)

• Solution: estimate the likelihood of unseen n-grams

• Problems: how do you adjust the rest of the corpus
to accommodate these ‘phantom’ n-grams?

63

Problem

• Let’s assume we’re using N-grams
• How can we assign a probability to a sequence

where one of the component n-grams has a value of
zero

• Assume all the words are known and have been seen

64

Assume all the words are known and have been seen
– Go to a lower order n-gram
– Back off from bigrams to unigrams
– Replace the zero with something else

Add-One (Laplace)

• Make the zero counts 1.

• Rationale: They’re just events you haven’t seen yet. If
you had seen them, chances are you would only
have seen them once… so make the count equal to
1

65

1.

Add-one Smoothing

• For unigrams:
– Add 1 to every word (type) count

– Normalize by N (tokens) /(N (tokens) +V (types))

– Smoothed count (adjusted for additions to N) is

VN
Nci


 







 1

66

– Normalize by N to get the new unigram probability:

• For bigrams:
– Add 1 to every bigram c(wn-1 wn) + 1

– Incr unigram count by vocabulary size c(wn-1) + V

VN 

VN
c

ip i


 1*

12

Original BERP Counts

67

BERP Table: Bigram Probabilities

68

BERP After Add-One
Was .65

69

Add-One Smoothed BERP
Reconstituted

70

– Discount: ratio of new counts to old (e.g. add-one smoothing
changes the BERP count (to|want) from 786 to 331 (dc=.42)
and p(to|want) from .65 to .28)

71

– Problem: add one smoothing changes counts drastically:
• too much weight given to unseen ngrams

• in practice, unsmoothed bigrams often work better!

Better Smoothing

 Intuition used by many smoothing
algorithms
 Good-Turing
 Kneser-Ney

9/5/2012 Speech and Language Processing - Jurafsky and Martin 72

 Witten-Bell

 Is to use the count of things we’ve seen
once to help estimate the count of things
we’ve never seen

13

Good-Turing
Josh Goodman Intuition

 Imagine you are fishing
 There are 8 species: carp, perch, whitefish, trout,

salmon, eel, catfish, bass
 You have caught
 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel

= 18 fish

9/5/2012 Speech and Language Processing - Jurafsky and Martin 73

= 18 fish
 How likely is it that the next fish caught is from

a new species (one not seen in our previous
catch)?
 3/18

 Assuming so, how likely is it that next species is
trout?
 Must be less than 1/18

Slide adapted from Josh Goodman

Good-Turing

 Notation: Nx is the frequency-of-frequency-x
 So N10=1
 Number of fish species seen 10 times is 1 (carp)

 N1=3
 Number of fish species seen 1 is 3 (trout, salmon, eel)

 To estimate total number of unseen species

9/5/2012 Speech and Language Processing - Jurafsky and Martin 74

 To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N

 All other estimates are adjusted (down) to give
probabilities for unseen

Slide from Josh Goodman

Good-Turing Intuition

 Notation: Nx is the frequency-of-frequency-x
 So N10=1, N1=3, etc

 To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N p0=N1/N=3/18

9/5/2012 Speech and Language Processing - Jurafsky and Martin 75

c0 c1 p0 N1/N p0 N1/N 3/18

 All other estimates are adjusted (down) to give
probabilities for unseen

P(eel) = c*(1) = (1+1) 1/ 3 = 2/3

Slide from Josh Goodman

GT Fish Example

9/5/2012 Speech and Language Processing - Jurafsky and Martin 76

Bigram Frequencies of
Frequencies and
GT Re-estimates

9/5/2012 Speech and Language Processing - Jurafsky and Martin 77

Complications

 In practice, assume large counts (c>k for some k) are reliable:

 That complicates c*, making it:

9/5/2012 Speech and Language Processing - Jurafsky and Martin 78

 Also: we assume singleton counts c=1 are unreliable, so treat N-
grams with count of 1 as if they were count=0

 Also, need the Nk to be non-zero, so we need to smooth
(interpolate) the Nk counts before computing c* from them

14

Backoff and Interpolation

 Another really useful source of knowledge
 If we are estimating:
 trigram p(z|x,y)
 but count(xyz) is zero
Use info from:

9/5/2012 Speech and Language Processing - Jurafsky and Martin 79

 Use info from:
 Bigram p(z|y)

 Or even:
 Unigram p(z)

 How to combine this trigram, bigram,
unigram info in a valid fashion?

Backoff Vs. Interpolation

 Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram
 Interpolation: mix all three

9/5/2012 Speech and Language Processing - Jurafsky and Martin 80

Interpolation

 Simple interpolation

9/5/2012 Speech and Language Processing - Jurafsky and Martin 81

 Lambdas conditional on context:

How to Set the Lambdas?

 Use a held-out, or development, corpus
 Choose lambdas which maximize the

probability of some held-out data
 I.e. fix the N-gram probabilities

9/5/2012 Speech and Language Processing - Jurafsky and Martin 82

 Then search for lambda values
 That when plugged into previous equation
 Give largest probability for held-out set
 Can use EM to do this search

Katz Backoff

9/5/2012 Speech and Language Processing - Jurafsky and Martin 83

Why discounts P* and alpha?

 MLE probabilities sum to 1

S if d MLE b biliti b t b k d ff t

9/5/2012 Speech and Language Processing - Jurafsky and Martin 84

 So if we used MLE probabilities but backed off to
lower order model when MLE prob is zero

 We would be adding extra probability mass
 And total probability would be greater than 1

15

GT Smoothed Bigram
Probabilities

9/5/2012 Speech and Language Processing - Jurafsky and Martin 85

Intuition of
Backoff+Discounting

 How much probability to assign to all the
zero trigrams?
 Use GT or other discounting algorithm to tell

us

H t di id th t b bilit

9/5/2012 Speech and Language Processing - Jurafsky and Martin 86

 How to divide that probability mass
among different contexts?
 Use the N-1 gram estimates to tell us

 What do we do for the unigram words not
seen in training?
 Out Of Vocabulary = OOV words

OOV words: <UNK> word

 Out Of Vocabulary = OOV words
 We don’t use GT smoothing for these

 Because GT assumes we know the number of unseen events
 Instead: create an unknown word token <UNK>

 Training of <UNK> probabilities
 Create a fixed lexicon L of size V

9/5/2012 Speech and Language Processing - Jurafsky and Martin 87

 At text normalization phase, any training word not in L changed to
<UNK>

 Now we train its probabilities like a normal word
 At decoding time
 If text input: Use UNK probabilities for any word not in training

Practical Issues

 We do everything in log space
 Avoid underflow
 (also adding is faster than multiplying)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 88

Google N-Gram Release

9/5/2012 Speech and Language Processing - Jurafsky and Martin 89

Google N-Gram Release

 serve as the incoming 92
 serve as the incubator 99
 serve as the independent 794
 serve as the index 223
 serve as the indication 72

9/5/2012 Speech and Language Processing - Jurafsky and Martin 90

serve as the indication 72

 serve as the indicator 120
 serve as the indicators 45
 serve as the indispensable 111
 serve as the indispensible 40
 serve as the individual 234

16

Google Caveat

 Remember the lesson about test sets and
training sets... Test sets should be similar
to the training set (drawn from the same
distribution) for the probabilities to be
meaningful

9/5/2012 Speech and Language Processing - Jurafsky and Martin 91

meaningful.
 So... The Google corpus is fine if your

application deals with arbitrary English
text on the Web.
 If not then a smaller domain specific

corpus is likely to yield better results.

Summary

• N-gram probabilities can be used to estimate the
likelihood
– Of a word occurring in a context (N-1)

– Of a sentence occurring at all

• Smoothing techniques deal with problems of unseen

92

• Smoothing techniques deal with problems of unseen
words in a corpus

