
1

N-Grams and Corpus
Linguistics

1

September 6, 2012

Lecture #4

Transition

• Up to this point we’ve mostly been discussing words
in isolation

• Now we’re switching to sequences of words

• And we’re going to worry about assigning
b biliti t f d

2

probabilities to sequences of words

Who Cares?

• Why would you want to assign a probability to a
sentence or…

• Why would you want to predict the next word…

3

• Lots of applications

Real-Word Spelling Errors

• Mental confusions
– Their/they’re/there

– To/too/two

– Weather/whether

– Peace/piece

4

– Peace/piece

– You’re/your

• Typos that result in real words
– Lave for Have

Real Word Spelling Errors

• Collect a set of common pairs of confusions
• Whenever a member of this set is encountered

compute the probability of the sentence in which it
appears

• Substitute the other possibilities and compute the

5

Substitute the other possibilities and compute the
probability of the resulting sentence

• Choose the higher one

Next Word Prediction

• From a NY Times story...
– Stocks ...

– Stocks plunged this ….

– Stocks plunged this morning, despite a cut in interest rates

– Stocks plunged this morning despite a cut in interest rates

6

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall ...

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began

2

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began trading for the
first time since last …

– Stocks plunged this morning, despite a cut in interest rates
by the Federal Reserve, as Wall Street began trading for the
first time since last Tuesday's terrorist attacks.

7

Human Word Prediction

• Clearly, at least some of us have the ability to predict
future words in an utterance.

• How?
– Domain knowledge

S t ti k l d

8

– Syntactic knowledge

– Lexical knowledge

Word Prediction

 Guess the next word...
 ... I notice three guys standing on the ???

 There are many sources of knowledge
that can be used to inform this task,

9/5/2012 Speech and Language Processing - Jurafsky and Martin 9

including arbitrary world knowledge.
 But it turns out that you can do pretty well

by simply looking at the preceding words
and keeping track of some fairly simple
counts.

Word Prediction

 We can formalize this task using what are
called N-gram models.
 N-grams are token sequences of length N.
 Our earlier example contains the following

9/5/2012 Speech and Language Processing - Jurafsky and Martin 10

2-grams (aka bigrams)
 (I notice), (notice three), (three guys), (guys

standing), (standing on), (on the)

 Given knowledge of counts of N-grams such
as these, we can guess likely next words in
a sequence.

N-Gram Models

 More formally, we can use knowledge of
the counts of N-grams to assess the
conditional probability of candidate words
as the next word in a sequence.
O h h

9/5/2012 Speech and Language Processing - Jurafsky and Martin 11

 Or, we can use them to assess the
probability of an entire sequence of words.
 Pretty much the same thing as we’ll see...

Applications

• Why do we want to predict a word, given some
preceding words?
– Rank the likelihood of sequences containing various

alternative hypotheses, e.g. for ASR

Theatre owners say popcorn/unicorn sales have doubled...

12

Theatre owners say popcorn/unicorn sales have doubled...

– Assess the likelihood/goodness of a sentence, e.g. for text
generation or machine translation

The doctor recommended a cat scan.

El doctor recommendó una exploración del gato.

3

N-Gram Models of Language

• Use the previous N-1 words in a sequence to predict
the next word

• Language Model (LM)
– unigrams, bigrams, trigrams,…

H d t i th d l ?

13

• How do we train these models?
– Very large corpora

Counting Words in Corpora

• What is a word?
– e.g., are cat and cats the same word?

– September and Sept?

– zero and oh?

– Is a word? * ? ‘(‘ ?

14

– Is _ a word? ? (?

– How many words are there in don’t ? Gonna ?

– In Japanese and Chinese text -- how do we identify a word?

Terminology
• Sentence: unit of written language

• Utterance: unit of spoken language

• Word Form: the inflected form that appears in the
corpus

• Lemma: an abstract form shared by word forms

15

Lemma: an abstract form, shared by word forms
having the same stem, part of speech, and word
sense

• Types: number of distinct words in a corpus
(vocabulary size)

• Tokens: total number of words

Counting: Corpora

 So what happens when we look at large bodies
of text instead of single utterances?

 Brown et al (1992) large corpus of English text
 583 million wordform tokens
 293,181 wordform types

 Google

9/5/2012 Speech and Language Processing - Jurafsky and Martin 16

Goog e
 Crawl of 1,024,908,267,229 English tokens
 13,588,391 wordform types

 That seems like a lot of types... After all, even large dictionaries of English
have only around 500k types. Why so many here?

•Numbers
•Misspellings
•Names
•Acronyms
•etc

Corpora

• Corpora are online collections of text and speech
– Brown Corpus

– Wall Street Journal

– AP news

– Hansards

17

– Hansards

– DARPA/NIST text/speech corpora (Call Home, ATIS,
switchboard, Broadcast News, TDT, Communicator)

– TRAINS, Radio News

Language Modeling

 Back to word prediction
 We can model the word prediction task as

the ability to assess the conditional
probability of a word given the previous
words in the sequence

9/5/2012 Speech and Language Processing - Jurafsky and Martin 18

words in the sequence
 P(wn|w1,w2…wn-1)

 We’ll call a statistical model that can
assess this a Language Model

4

Language Modeling

 How might we go about calculating such a
conditional probability?
 One way is to use the definition of conditional

probabilities and look for counts. So to get
P(the | its water is so transparent that)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 19

 P(the | its water is so transparent that)
 By definition that’s

P(its water is so transparent that the)
P(its water is so transparent that)

We can get each of those from counts in a large
corpus.

Very Easy Estimate

 How to estimate?
 P(the | its water is so transparent that)

P(the | its water is so transparent that) =

9/5/2012 Speech and Language Processing - Jurafsky and Martin 20

Count(its water is so transparent that the)
Count(its water is so transparent that)

Very Easy Estimate

 According to Google those counts are 5/9.
 Unfortunately... 2 of those were to these

slides... So maybe it’s really
 3/7

I th t’ t t ibl i i d

9/5/2012 Speech and Language Processing - Jurafsky and Martin 21

 In any case, that’s not terribly convincing due
to the small numbers involved.

Language Modeling

 Unfortunately, for most sequences and for
most text collections we won’t get good
estimates from this method.
 What we’re likely to get is 0. Or worse 0/0.

9/5/2012 Speech and Language Processing - Jurafsky and Martin 22

 Clearly, we’ll have to be a little more
clever.
 Let’s use the chain rule of probability
 And a particularly useful independence

assumption.

The Chain Rule

 Recall the definition of conditional probabilities

 Rewriting:)(

)^(
)|(

BP

BAP
BAP

9/5/2012 Speech and Language Processing - Jurafsky and Martin 23

 For sequences...
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

 In general
 P(x1,x2,x3,…xn) =

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)()|()^(BPBAPBAP

The Chain Rule

P(its water was so transparent)=

9/5/2012 Speech and Language Processing - Jurafsky and Martin 24

P(its)*
P(water|its)*

P(was|its water)*
P(so|its water was)*

P(transparent|its water was so)

5

Example

• The big red dog

• P(The)*P(big|the)*P(red|the big)*P(dog|the big red)

25

• Better P(The| <Beginning of sentence>) written as

P(The | <S>)

General Case

• The word sequence from position 1 to n is

• So the probability of a sequence is
nw

1

)|()|()|()()(12 nn wwPwwPwwPwPwP

26

)|()(

)|()...|()|()()(

1
12

1

1131211

k

k
n

k

n

wwPwP

wwPwwPwwPwPwP

Unfortunately

• That doesn’t help since its unlikely we’ll ever gather
the right statistics for the prefixes.

27

Markov Assumption

• Assume that the entire prefix history isn’t necessary.

• In other words, an event doesn’t depend on all of its
history, just a fixed length near history

28

Markov Assumption

• So for each component in the product replace each
with the approximation (assuming a prefix of N)

29

)|()|(1
1

1
1

 n
Nnn

n
n wwPwwP

N-Grams
The big red dog

• Unigrams: P(dog)

• Bigrams: P(dog|red)

• Trigrams: P(dog|big red)

• Four-grams: P(dog|the big red)

30

In general, we’ll be dealing with

P(Word| Some fixed prefix)

6

Caveat

• The formulation P(Word| Some fixed prefix) is not really
appropriate in many applications.

• It is if we’re dealing with real time speech where we
only have access to prefixes.

• But if we’re dealing with text we already have the

31

But if we re dealing with text we already have the
right and left contexts. There’s no a priori reason to
stick to left contexts.

Training and Testing

• N-Gram probabilities come from a training corpus
– overly narrow corpus: probabilities don't generalize

– overly general corpus: probabilities don't reflect task or
domain

• A separate test corpus is used to evaluate the model

32

A separate test corpus is used to evaluate the model,
typically using standard metrics
– held out test set; development test set

– cross validation

– results tested for statistical significance

A Simple Example

– P(I want to eat Chinese food) = P(I | <start>) P(want | I) P(to
| want) P(eat | to) P(Chinese | eat) P(food | Chinese)

33

A Bigram Grammar Fragment
from BERP

.02eat in.06eat lunch

.03eat breakfast.06eat some

.03eat Thai.16eat on

34

.001eat British.03eat today

.007eat dessert.04eat Indian

.01eat tomorrow.04eat a

.02eat Mexican.04eat at

.02eat Chinese.05eat dinner

.09to spend.32I want

.14to have.02<start> I’m

.26to eat.04<start> Tell

.01want Thai.06<start> I’d

.04want some.25<start> I

35

.01British lunch.05want a

.01British cuisine.65want to

.15British restaurant.04I have

.60British food.08I don’t

.02to be.29I would

• P(I want to eat British food) = P(I|<start>) P(want|I)
P(to|want) P(eat|to) P(British|eat) P(food|British) =
.25*.32*.65*.26*.001*.60 = .000080

• vs. I want to eat Chinese food = .00015

• Probabilities seem to capture ``syntactic'' facts,
``world knowledge''
– eat is often followed by an NP

36

y

– British food is not too popular

• N-gram models can be trained by counting and
normalization

7

An Aside on Logs

• You don’t really do all those multiplies. The numbers
are too small and lead to underflows

• Convert the probabilities to logs and then do
additions.

T t th l b bilit (if d it) b k t

37

• To get the real probability (if you need it) go back to
the antilog.

How do we get the N-gram
probabilities?

• N-gram models can be trained by counting and
normalization

38

Estimating Bigram
Probabilities

 The Maximum Likelihood Estimate (MLE)

P(w | w)
count(wi1,wi)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 39

P(wi | wi1) count(wi1)

An Example

 <s> I am Sam </s>
 <s> Sam I am </s>
 <s> I do not like green eggs and ham </s>

9/5/2012 Speech and Language Processing - Jurafsky and Martin 40

Maximum Likelihood Estimates

 The maximum likelihood estimate of some parameter of
a model M from a training set T
 Is the estimate that maximizes the likelihood of the training set

T given the model M
 Suppose the word Chinese occurs 400 times in a corpus

of a million words (Brown corpus)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 41

of a million words (Brown corpus)
 What is the probability that a random word from some

other text from the same distribution will be “Chinese”
 MLE estimate is 400/1000000 = .004

 This may be a bad estimate for some other corpus
 But it is the estimate that makes it most likely that

“Chinese” will occur 400 times in a million word corpus.

Berkeley Restaurant Project
Sentences

 can you tell me about any good cantonese restaurants
close by

 mid priced thai food is what i’m looking for
 tell me about chez panisse

9/5/2012 Speech and Language Processing - Jurafsky and Martin 42

 can you give me a listing of the kinds of food that are
available

 i’m looking for a good place to eat breakfast
 when is caffe venezia open during the day

8

BERP Bigram Counts

12038601003to

686078603want

00013010878I

lunchfoodChineseeattowantI

43

0100004lunch

000017019food

112000002Chinese

522190200eat

BERP Bigram Probabilities
• Normalization: divide each row's counts by

appropriate unigram counts for wn-1

4591506213938325612153437

lunchfoodChineseeattowantI

44

• Computing the bigram probability of I I
– C(I,I)/C(all I)

– p (I|I) = 8 / 3437 = .0023

• Maximum Likelihood Estimation (MLE): relative
frequency of e.g.

)(
)(

1

2,1

wfreq
wwfreq

BERP Table: Bigram Probabilities

45

What do we learn about the
language?

• What's being captured with ...
– P(want | I) = .32

– P(to | want) = .65

– P(eat | to) = .26

– P(food | Chinese) = 56

46

– P(food | Chinese) = .56

– P(lunch | eat) = .055

• What about...
– P(I | I) = .0023

– P(I | want) = .0025

– P(I | food) = .013

– P(I | I) = .0023 I I I I want

– P(I | want) = .0025 I want I want

– P(I | food) = .013 the kind of food I want is ...

47

Kinds of Knowledge

 P(english|want) = .0011
 P(chinese|want) = .0065

P(to|want) 66

 As crude as they are, N-gram probabilities
capture a range of interesting facts about
language.

World knowledge

9/5/2012 Speech and Language Processing - Jurafsky and Martin 48

 P(to|want) = .66
 P(eat | to) = .28
 P(food | to) = 0
 P(want | spend) = 0
 P (i | <s>) = .25

Syntax

Discourse

9

Shannon’s Method

 Assigning probabilities to sentences is all
well and good, but it’s not terribly
illuminating . A more interesting task is to
turn the model around and use it to
generate random sentences that are like

9/5/2012 Speech and Language Processing - Jurafsky and Martin 49

generate random sentences that are like
the sentences from which the model was
derived.
 Generally attributed to

Claude Shannon.

Shannon’s Method

 Sample a random bigram (<s>, w) according to its probability
 Now sample a random bigram (w, x) according to its probability

 Where the prefix w matches the suffix of the first.
 And so on until we randomly choose a (y, </s>)
 Then string the words together
 <s> I

I want

9/5/2012 Speech and Language Processing - Jurafsky and Martin 50

I want
want to

to eat
eat Chinese

Chinese food
food </s>

Shakespeare

9/5/2012 Speech and Language Processing - Jurafsky and Martin 51

Shakespeare as a Corpus

 N=884,647 tokens, V=29,066
 Shakespeare produced 300,000 bigram types

out of V2= 844 million possible bigrams...
 So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 52

()
 This is the biggest problem in language modeling;

we’ll come back to it.

 Quadrigrams are worse: What's coming out
looks like Shakespeare because it is
Shakespeare

The Wall Street Journal is Not
Shakespeare

9/5/2012 Speech and Language Processing - Jurafsky and Martin 53

Evaluation

 How do we know if our models are any
good?
 And in particular, how do we know if one

model is better than another.
 Well Shannon’s game gives us an

9/5/2012 Speech and Language Processing - Jurafsky and Martin 54

Well Shannon s game gives us an
intuition.
 The generated texts from the higher order

models sure look better. That is, they sound
more like the text the model was obtained
from.
 But what does that mean? Can we make that

notion operational?

10

Evaluation

 Standard method
 Train parameters of our model on a training set.
 Look at the models performance on some new data

 This is exactly what happens in the real world; we want to
know how our model performs on data we haven’t seen

 So use a test set. A dataset which is different than
b d f h

9/5/2012 Speech and Language Processing - Jurafsky and Martin 55

our training set, but is drawn from the same source
 Then we need an evaluation metric to tell us how

well our model is doing on the test set.
 One such metric is perplexity (to be introduced below)

Unknown Words

 But once we start looking at test data,
we’ll run into words that we haven’t seen
before (pretty much regardless of how
much training data you have.

 With an Open Vocabulary task

9/5/2012 Speech and Language Processing - Jurafsky and Martin 56

 Create an unknown word token <UNK>
 Training of <UNK> probabilities
 Create a fixed lexicon L, of size V
 From a dictionary or
 A subset of terms from the training set

 At text normalization phase, any training word not in L changed to
<UNK>

 Now we count that like a normal word
 At test time
 Use UNK counts for any word not in training

Perplexity

 Perplexity is the probability of
the test set (assigned by the
language model), normalized by
the number of words:

 Chain rule:

9/5/2012 Speech and Language Processing - Jurafsky and Martin 57

 For bigrams:

 Minimizing perplexity is the same as maximizing
probability
 The best language model is one that best

predicts an unseen test set

Lower perplexity means a
better model

 Training 38 million words, test 1.5 million
words, WSJ

9/5/2012 Speech and Language Processing - Jurafsky and Martin 58

Evaluating N-Gram Models

 Best evaluation for a language model
 Put model A into an application
 For example, a speech recognizer

 Evaluate the performance of the
li ti ith d l A

9/5/2012 Speech and Language Processing - Jurafsky and Martin 59

application with model A
 Put model B into the application and

evaluate
 Compare performance of the application

with the two models
 Extrinsic evaluation

Difficulty of extrinsic (in-vivo)
evaluation of N-gram models
 Extrinsic evaluation
 This is really time-consuming
 Can take days to run an experiment

 So
 As a temporary solution, in order to run experiments

9/5/2012 Speech and Language Processing - Jurafsky and Martin 60

 To evaluate N-grams we often use an intrinsic
evaluation, an approximation called perplexity

 But perplexity is a poor approximation unless the test
data looks just like the training data

 So is generally only useful in pilot experiments
(generally is not sufficient to publish)

 But is helpful to think about.

11

Zero Counts

 Back to Shakespeare
 Recall that Shakespeare produced 300,000 bigram

types out of V2= 844 million possible bigrams...
 So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 61

 Does that mean that any sentence that contains one
of those bigrams should have a probability of 0?

Zero Counts
 Some of those zeros are really zeros...

 Things that really can’t or shouldn’t happen.
 On the other hand, some of them are just rare events.

 If the training corpus had been a little bigger they would have had a
count (probably a count of 1!).

 Zipf’s Law (long tail phenomenon):
 A small number of events occur with high frequency

A large number of events occur with low frequency

9/5/2012 Speech and Language Processing - Jurafsky and Martin 62

 A large number of events occur with low frequency
 You can quickly collect statistics on the high frequency events
 You might have to wait an arbitrarily long time to get valid statistics

on low frequency events
 Result:

 Our estimates are sparse! We have no counts at all for the vast bulk
of things we want to estimate!

 Answer:
 Estimate the likelihood of unseen (zero count) N-grams!

Smoothing Techniques
• Every n-gram training matrix is sparse, even for very

large corpora (Zipf’s law)

• Solution: estimate the likelihood of unseen n-grams

• Problems: how do you adjust the rest of the corpus
to accommodate these ‘phantom’ n-grams?

63

Problem

• Let’s assume we’re using N-grams
• How can we assign a probability to a sequence

where one of the component n-grams has a value of
zero

• Assume all the words are known and have been seen

64

Assume all the words are known and have been seen
– Go to a lower order n-gram
– Back off from bigrams to unigrams
– Replace the zero with something else

Add-One (Laplace)

• Make the zero counts 1.

• Rationale: They’re just events you haven’t seen yet. If
you had seen them, chances are you would only
have seen them once… so make the count equal to
1

65

1.

Add-one Smoothing

• For unigrams:
– Add 1 to every word (type) count

– Normalize by N (tokens) /(N (tokens) +V (types))

– Smoothed count (adjusted for additions to N) is

VN
Nci

 1

66

– Normalize by N to get the new unigram probability:

• For bigrams:
– Add 1 to every bigram c(wn-1 wn) + 1

– Incr unigram count by vocabulary size c(wn-1) + V

VN

VN
c

ip i

 1*

12

Original BERP Counts

67

BERP Table: Bigram Probabilities

68

BERP After Add-One
Was .65

69

Add-One Smoothed BERP
Reconstituted

70

– Discount: ratio of new counts to old (e.g. add-one smoothing
changes the BERP count (to|want) from 786 to 331 (dc=.42)
and p(to|want) from .65 to .28)

71

– Problem: add one smoothing changes counts drastically:
• too much weight given to unseen ngrams

• in practice, unsmoothed bigrams often work better!

Better Smoothing

 Intuition used by many smoothing
algorithms
 Good-Turing
 Kneser-Ney

9/5/2012 Speech and Language Processing - Jurafsky and Martin 72

 Witten-Bell

 Is to use the count of things we’ve seen
once to help estimate the count of things
we’ve never seen

13

Good-Turing
Josh Goodman Intuition

 Imagine you are fishing
 There are 8 species: carp, perch, whitefish, trout,

salmon, eel, catfish, bass
 You have caught
 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel

= 18 fish

9/5/2012 Speech and Language Processing - Jurafsky and Martin 73

= 18 fish
 How likely is it that the next fish caught is from

a new species (one not seen in our previous
catch)?
 3/18

 Assuming so, how likely is it that next species is
trout?
 Must be less than 1/18

Slide adapted from Josh Goodman

Good-Turing

 Notation: Nx is the frequency-of-frequency-x
 So N10=1
 Number of fish species seen 10 times is 1 (carp)

 N1=3
 Number of fish species seen 1 is 3 (trout, salmon, eel)

 To estimate total number of unseen species

9/5/2012 Speech and Language Processing - Jurafsky and Martin 74

 To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N

 All other estimates are adjusted (down) to give
probabilities for unseen

Slide from Josh Goodman

Good-Turing Intuition

 Notation: Nx is the frequency-of-frequency-x
 So N10=1, N1=3, etc

 To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1 p0 = N1/N p0=N1/N=3/18

9/5/2012 Speech and Language Processing - Jurafsky and Martin 75

c0 c1 p0 N1/N p0 N1/N 3/18

 All other estimates are adjusted (down) to give
probabilities for unseen

P(eel) = c*(1) = (1+1) 1/ 3 = 2/3

Slide from Josh Goodman

GT Fish Example

9/5/2012 Speech and Language Processing - Jurafsky and Martin 76

Bigram Frequencies of
Frequencies and
GT Re-estimates

9/5/2012 Speech and Language Processing - Jurafsky and Martin 77

Complications

 In practice, assume large counts (c>k for some k) are reliable:

 That complicates c*, making it:

9/5/2012 Speech and Language Processing - Jurafsky and Martin 78

 Also: we assume singleton counts c=1 are unreliable, so treat N-
grams with count of 1 as if they were count=0

 Also, need the Nk to be non-zero, so we need to smooth
(interpolate) the Nk counts before computing c* from them

14

Backoff and Interpolation

 Another really useful source of knowledge
 If we are estimating:
 trigram p(z|x,y)
 but count(xyz) is zero
Use info from:

9/5/2012 Speech and Language Processing - Jurafsky and Martin 79

 Use info from:
 Bigram p(z|y)

 Or even:
 Unigram p(z)

 How to combine this trigram, bigram,
unigram info in a valid fashion?

Backoff Vs. Interpolation

 Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram
 Interpolation: mix all three

9/5/2012 Speech and Language Processing - Jurafsky and Martin 80

Interpolation

 Simple interpolation

9/5/2012 Speech and Language Processing - Jurafsky and Martin 81

 Lambdas conditional on context:

How to Set the Lambdas?

 Use a held-out, or development, corpus
 Choose lambdas which maximize the

probability of some held-out data
 I.e. fix the N-gram probabilities

9/5/2012 Speech and Language Processing - Jurafsky and Martin 82

 Then search for lambda values
 That when plugged into previous equation
 Give largest probability for held-out set
 Can use EM to do this search

Katz Backoff

9/5/2012 Speech and Language Processing - Jurafsky and Martin 83

Why discounts P* and alpha?

 MLE probabilities sum to 1

S if d MLE b biliti b t b k d ff t

9/5/2012 Speech and Language Processing - Jurafsky and Martin 84

 So if we used MLE probabilities but backed off to
lower order model when MLE prob is zero

 We would be adding extra probability mass
 And total probability would be greater than 1

15

GT Smoothed Bigram
Probabilities

9/5/2012 Speech and Language Processing - Jurafsky and Martin 85

Intuition of
Backoff+Discounting

 How much probability to assign to all the
zero trigrams?
 Use GT or other discounting algorithm to tell

us

H t di id th t b bilit

9/5/2012 Speech and Language Processing - Jurafsky and Martin 86

 How to divide that probability mass
among different contexts?
 Use the N-1 gram estimates to tell us

 What do we do for the unigram words not
seen in training?
 Out Of Vocabulary = OOV words

OOV words: <UNK> word

 Out Of Vocabulary = OOV words
 We don’t use GT smoothing for these

 Because GT assumes we know the number of unseen events
 Instead: create an unknown word token <UNK>

 Training of <UNK> probabilities
 Create a fixed lexicon L of size V

9/5/2012 Speech and Language Processing - Jurafsky and Martin 87

 At text normalization phase, any training word not in L changed to
<UNK>

 Now we train its probabilities like a normal word
 At decoding time
 If text input: Use UNK probabilities for any word not in training

Practical Issues

 We do everything in log space
 Avoid underflow
 (also adding is faster than multiplying)

9/5/2012 Speech and Language Processing - Jurafsky and Martin 88

Google N-Gram Release

9/5/2012 Speech and Language Processing - Jurafsky and Martin 89

Google N-Gram Release

 serve as the incoming 92
 serve as the incubator 99
 serve as the independent 794
 serve as the index 223
 serve as the indication 72

9/5/2012 Speech and Language Processing - Jurafsky and Martin 90

serve as the indication 72

 serve as the indicator 120
 serve as the indicators 45
 serve as the indispensable 111
 serve as the indispensible 40
 serve as the individual 234

16

Google Caveat

 Remember the lesson about test sets and
training sets... Test sets should be similar
to the training set (drawn from the same
distribution) for the probabilities to be
meaningful

9/5/2012 Speech and Language Processing - Jurafsky and Martin 91

meaningful.
 So... The Google corpus is fine if your

application deals with arbitrary English
text on the Web.
 If not then a smaller domain specific

corpus is likely to yield better results.

Summary

• N-gram probabilities can be used to estimate the
likelihood
– Of a word occurring in a context (N-1)

– Of a sentence occurring at all

• Smoothing techniques deal with problems of unseen

92

• Smoothing techniques deal with problems of unseen
words in a corpus

