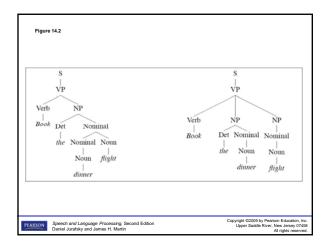
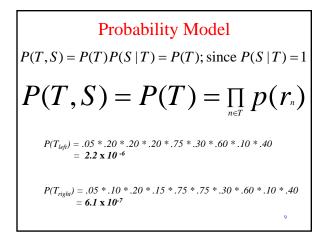

Parse Disambiguation

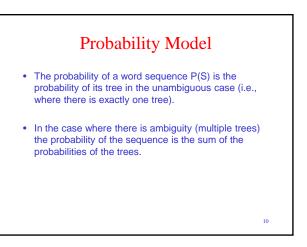
- In the previous chapter we have seen several instances of parsing ambiguity: coordination ambiguity and attachment ambiguity
- So far we return every parse and let later modules deal with the ambiguity
- Can we use probabilistic methods to choose most likely interpretation?

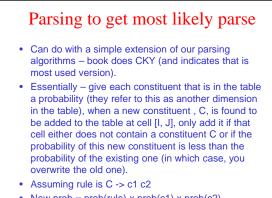

2

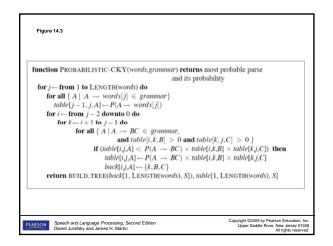


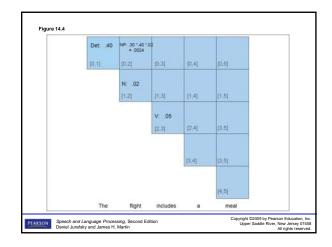
- Probabilistic Context Free Grammar: a probabilistic grammar which favors more common rules
- · Augment each rule with its associated probability
- Modify parser so that it returns most likely parse (CKY Algorithm)
- · Problems and augmentations to the basic model

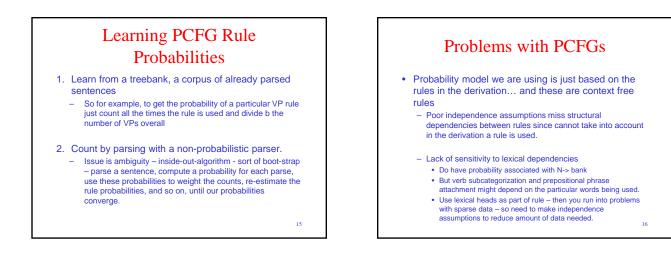


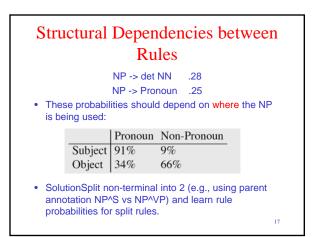

0		¥				
Grammar		Lexicon				
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$				
$S \rightarrow Aux NP VP$	[.15]	Noun \rightarrow book [.10] flight [.30]				
$S \rightarrow VP$	[.05]	meal [.15] money [.05]				
$NP \rightarrow Pronoun$	[.35]	flights [.40] dinner [.10]				
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$				
$NP \rightarrow Det Nominal$	[.20]	prefer; [.40]				
$NP \rightarrow Nominal$	[.15]	Pronoun $\rightarrow I[.40] \mid she [.05]$				
Nominal \rightarrow Noum	[.75]	me [.15] you [.40]				
$Nominal \rightarrow Nominal Noum$	[.20]	Proper-Noun \rightarrow Houston [.60]				
Nominal \rightarrow Nominal PP	[.05]	NWA [.40]				
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [40]$				
$VP \rightarrow Verb NP$	[.20]	Preposition \rightarrow from [.30] to [.30]				
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]				
$VP \rightarrow Verb PP$	[.15]	through [.05]				
$VP \rightarrow Verb NP NP$	[.05]					
$VP \rightarrow VP PP$	[.15]					
$PP \rightarrow Preposition NP$	[1.0]					

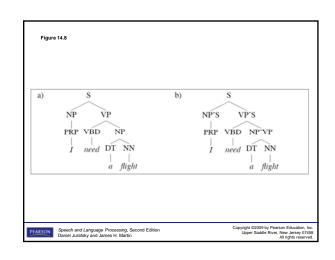


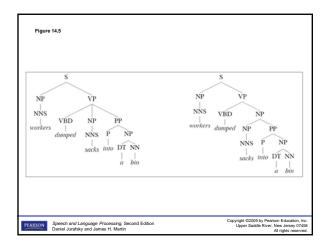

	R	ules	Р		R	iles	F
S	\rightarrow	VP	.05	S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20	VP	\rightarrow	Verb NP NP	.10
NP	\rightarrow	Det Nominal	.20	NP	\rightarrow	Det Nominal	.20
Nomir	al \rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
Nomir	al \rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
				Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30	Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60	Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10	Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flights	.40	Noun	\rightarrow	flights	.40

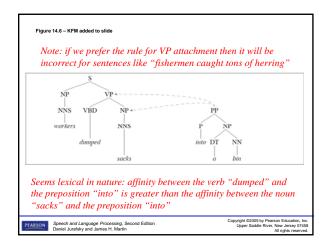


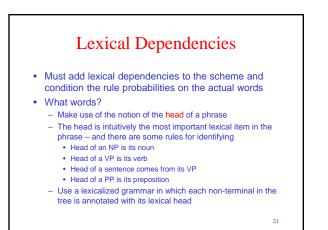


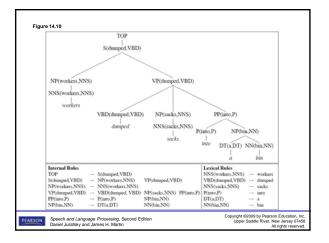

New prob = prob(rule) x prob(c1) x prob(c2)

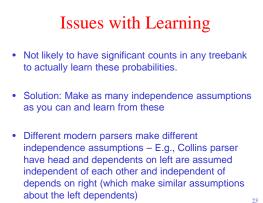



	NP VP		.20	Det N	\rightarrow the \rightarrow a \rightarrow meal \rightarrow flight	
PEARSON		and Language Processing, Ser urafsky and James H. Martin	cond Edition			y Péarson Education, In River, New Jersey 0745 All rights reserve









Summary

- Probabilistic Context-Free Grammars

 Help us deal with ambiguity by preferring more likely parses
- Grammar rules have attached probabilities which capture the probability of the rule's RHS given its LHS (probabilities of all rules with same LHS sum to 1)
- We can compute the probability of a tree (product of the probabilities of the rules used)
- Can parse using augmented algorithms
- Can learn probabilities from a tree bank
- PCFGs have problems with independence assumptions and with lack of lexical conditioning
- Some solutions exist problems of data sparcity