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Statistical Parsing
Chapter 14
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October 2012

Lecture #9

Parse Disambiguation

• In the previous chapter we have seen several 
instances of parsing ambiguity: coordination 
ambiguity and attachment ambiguity

• So far – we return every parse and let later modules 
deal with the ambiguity
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deal with the ambiguity

• Can we use probabilistic methods to choose most 
likely interpretation?

Probabilistic Parsing

• Probabilistic Context Free Grammar: a probabilistic 
grammar which favors more common rules

• Augment each rule with its associated probability

• Modify parser so that it returns most likely parse 
(CKY Algorithm)

• Problems and augmentations to the basic model
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Probability Model

• Attach probabilities to grammar rules – representing 
the probability that a given non-terminal on the rule’s 
LHS will be expanded to the sequence on the rule’s 
LHS.

• The expansions for a given non terminal sum to 1• The expansions for a given non-terminal sum to 1
– VP -> verb .55

– VP -> verb NP .40

– VP -> verb NP NP .05

• Probability captures P(RHS | LHS)
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Figure 14.1
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Using a PCFS

• A PCFS can be used to estimate a number of useful 
probabilities concerning a sentence and its parse 
trees
– Probability of a particular parse tree (useful for 

disambiguation)disambiguation)

– Probability of a sentence or piece of a sentence (useful for 
language modeling)

How?

• A derivation (tree) consists of the set of grammar 
rules that are in the tree

• The probability of a tree is just the product of the 
probabilities of the rules in the derivation.

6



2

Figure 14.2

Copyright ©2009 by Pearson Education, Inc.
Upper Saddle River, New Jersey 07458

All rights reserved.

Speech and Language Processing, Second Edition
Daniel Jurafsky and James H. Martin

Figure 14.2 continued
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Probability Model
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P(Tleft) = .05 * .20 * .20 * .20 * .75 * .30 * .60 * .10 * .40
=  2.2 x 10 -6

P(Tright) = .05 * .10 * .20 * .15 * .75 * .75 * .30 * .60 * .10 * .40
= 6.1 x 10-7

Probability Model

• The probability of a word sequence P(S) is the 
probability of its tree in the unambiguous case (i.e., 
where there is exactly one tree).

I th h th i bi it ( lti l t )• In the case where there is ambiguity (multiple trees) 
the probability of the sequence is the sum of the 
probabilities of the trees.
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Parsing to get most likely parse

• Can do with a simple extension of our parsing 
algorithms – book does CKY (and indicates that is 
most used version).

• Essentially – give each constituent that is in the table 
a probability (they refer to this as another dimension 
in the table) when a new constituent C is found toin the table), when a new constituent , C, is found to 
be added to the table at cell [I, J], only add it if that 
cell either does not contain a constituent C or if the 
probability of this new constituent is less than the 
probability of the existing one (in which case, you 
overwrite the old one).

• Assuming rule is C -> c1 c2

• New prob = prob(rule) x prob(c1) x prob(c2)
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Figure 14.3
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Figure 14.4
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Learning PCFG Rule 
Probabilities

1. Learn from a treebank, a corpus of already parsed 
sentences
– So for example, to get the probability of a particular VP rule 

just count all the times the rule is used and divide b the 
number of VPs overall

2. Count by parsing with a non-probabilistic parser.
– Issue is ambiguity – inside-out-algorithm - sort of boot-strap 

– parse a sentence, compute a probability for each parse, 
use these probabilities to weight the counts, re-estimate the 
rule probabilities, and so on, until our probabilities 
converge.
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Problems with PCFGs

• Probability model we are using is just based on the 
rules in the derivation… and these are context free 
rules
– Poor independence assumptions miss structural 

dependencies between rules since cannot take into accountdependencies between rules since cannot take into account 
in the derivation a rule is used.

– Lack of sensitivity to lexical dependencies
• Do have probability associated with N-> bank

• But verb subcategorization and prepositional phrase 
attachment might depend on the particular words being used.

• Use lexical heads as part of rule – then you run into problems 
with sparse data – so need to make independence 
assumptions to reduce amount of data needed.

16

Structural Dependencies between 
Rules

NP -> det NN      .28

NP -> Pronoun    .25

• These probabilities should depend on where the NP 
is being used:

• SolutionSplit non-terminal into 2 (e.g., using parent 
annotation NP^S vs NP^VP) and learn rule 
probabilities for split rules.
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Figure 14.8
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Figure 14.5
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Figure 14.6 – KFM added to slide

Note: if we prefer the rule for VP attachment then it will be 
incorrect for sentences like “fishermen caught tons of herring”
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Seems lexical in nature: affinity between the verb “dumped” and
the preposition “into” is greater than the affinity between the noun
“sacks” and the preposition “into”

Lexical Dependencies

• Must add lexical dependencies to the scheme and 
condition the rule probabilities on the actual words

• What words?
– Make use of the notion of the head of a phrase

Th h d i i t iti l th t i t t l i l it i th– The head is intuitively the most important lexical item in the 
phrase – and there are some rules for identifying 

• Head of an NP is its noun

• Head of a VP is its verb

• Head of a sentence comes from its VP

• Head of a PP is its preposition

– Use a lexicalized grammar in which each non-terminal in the 
tree is annotated with its lexical head
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Figure 14.10
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Issues with Learning

• Not likely to have significant counts in any treebank
to actually learn these probabilities.

• Solution: Make as many independence assumptions 
d l f thas you can and learn from these

• Different modern parsers make different 
independence assumptions – E.g., Collins parser 
have head and dependents on left are assumed 
independent of each other and independent of 
depends on right (which make similar assumptions 
about the left dependents)
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Summary
• Probabilistic Context-Free Grammars

– Help us deal with ambiguity by preferring more likely parses

• Grammar rules have attached probabilities which 
capture the probability of the rule’s RHS given its LHS 
(probabilities of all rules with same LHS sum to 1)

• We can compute the probability of a tree (product of the 
probabilities of the rules used)

• Can parse using augmented algorithms

• Can learn probabilities from a tree bank

• PCFGs have problems with independence assumptions 
and with lack of lexical conditioning

• Some solutions exist – problems of data sparcity
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