

Probabilistic Parsing

- Probabilistic Context Free Grammar: a probabilistic grammar which favors more common rules
- Augment each rule with its associated probability
- Modify parser so that it returns most likely parse (CKY Algorithm)
- Problems and augmentations to the basic model

Parse Disambiguation

- In the previous chapter we have seen several instances of parsing ambiguity: coordination ambiguity and attachment ambiguity
- So far - we return every parse and let later modules deal with the ambiguity
- Can we use probabilistic methods to choose most likely interpretation?

$$
\begin{gathered}
\text { Probability Model } \\
P(T, S)=P(T) P(S \mid T)=P(T) \text {; since } P(S \mid T)=1 \\
\boldsymbol{P}(\boldsymbol{T}, S)=\boldsymbol{P}(T)=\prod_{n \in T} \boldsymbol{P}\left(\boldsymbol{r}_{n}\right) \\
\begin{aligned}
P\left(T_{\text {lef }}\right) & =.05 * .20^{*} .20 * .20 * .75 * .30 * .60 * .10 * .40 \\
& =2.2 \times 10^{-6}
\end{aligned} \\
\begin{aligned}
P\left(T_{\text {right }}\right) & =.05 * .10^{*} .20 * .15 * .75 * .75 * .30 * .60 * .10 * .40 \\
& =\mathbf{6 . 1 \times 1 0 ^ { - 7 }}
\end{aligned}
\end{gathered}
$$

Probability Model

- The probability of a word sequence $P(S)$ is the probability of its tree in the unambiguous case (i.e., where there is exactly one tree).
- In the case where there is ambiguity (multiple trees) the probability of the sequence is the sum of the probabilities of the trees.

$$
9
$$

Parsing to get most likely parse

- Can do with a simple extension of our parsing algorithms - book does CKY (and indicates that is most used version)
- Essentially - give each constituent that is in the table a probability (they refer to this as another dimension in the table), when a new constituent, C , is found to be added to the table at cell $[I, J]$, only add it if that cell either does not contain a constituent C or if the probability of this new constituent is less than the probability of the existing one (in which case, you overwrite the old one).
- Assuming rule is C -> c1 c2
- New prob $=$ prob(rule) $\times \operatorname{prob}(c 1) \times \operatorname{prob}(c 2)$

Figure 14.3

function PROBABILISTIC-CKY(words.granmar) returns most probable parse
for $j-$ from 1 to LeNGTH(words) do
for all $\{A \mid A \rightarrow$ words $[j] \in$ grammar
table $[j-1, j, A] \leftarrow P(A \rightarrow$ words $[j])$
for $i \leftarrow$ from $j-2$ downto 0 do
for $k-i+1$ to $j-1$ do
for all $\{A \mid A \rightarrow B C \in$ grammar and table $[i, k, B]>0$ and table $[k, j, C]>0$
If $($ table $[i, j, A]<P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C])$ then table $[i, j, A]<P(A \rightarrow B C) \times$ table $[i, k, B] \times$ table $[k, j, C]$ back $[i, j, A]-\{k, B, C\}$
return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

FHARSOs Speech and Language Processing, Second Edition

Problems with PCFGs

- Probability model we are using is just based on the rules in the derivation... and these are context free rules
- Poor independence assumptions miss structural
dependencies between rules since cannot take into account in the derivation a rule is used.
- Lack of sensitivity to lexical dependencies
- Do have probability associated with N -> bank
- But verb subcategorization and prepositional phrase
attachment might depend on the particular words being used.
- Use lexical heads as part of rule - then you run into problems with sparse data - so need to make independence assumptions to reduce amount of data needed

Structural Dependencies between

Rules	
NP \rightarrow det NN	.28
NP \rightarrow Pronoun	.25

- These probabilities should depend on where the NP is being used

	Pronoun	Non-Pronoun
Subject	91%	9%
Object	34%	66%

- SolutionSplit non-terminal into 2 (e.g., using parent annotation NP^S vs NP^VP) and learn rule probabilities for split rules.

Lexical Dependencies

- Must add lexical dependencies to the scheme and condition the rule probabilities on the actual words
- What words?
- Make use of the notion of the head of a phrase
- The head is intuitively the most important lexical item in the phrase - and there are some rules for identifying
- Head of an NP is its noun
- Head of a VP is its verb
- Head of a sentence comes from its VP
- Head of a PP is its preposition
- Use a lexicalized grammar in which each non-terminal in the tree is annotated with its lexical head

Issues with Learning

- Not likely to have significant counts in any treebank to actually learn these probabilities.
- Solution: Make as many independence assumptions as you can and learn from these
- Different modern parsers make different independence assumptions - E.g., Collins parser have head and dependents on left are assumed independent of each other and independent of depends on right (which make similar assumptions about the left dependents)

Summary

- Probabilistic Context-Free Grammars
- Help us deal with ambiguity by preferring more likely parses
- Grammar rules have attached probabilities which capture the probability of the rule's RHS given its LHS (probabilities of all rules with same LHS sum to 1)
- We can compute the probability of a tree (product of the probabilities of the rules used)
- Can parse using augmented algorithms
- Can learn probabilities from a tree bank
- PCFGs have problems with independence assumptions and with lack of lexical conditioning
- Some solutions exist - problems of data sparcity

