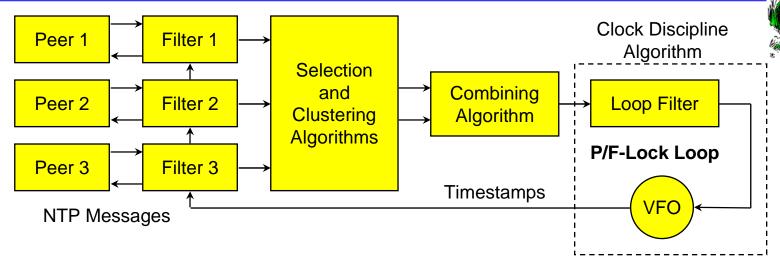
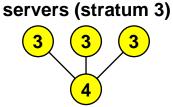
Autonomous Configuration

David L. Mills
University of Delaware
http://www.eecis.udel.edu/~mills
mailto:mills@udel.edu

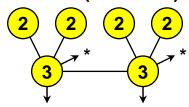

Sir John Tenniel; Alice's Adventures in Wonderland, Lewis Carroll

Briefing roadmap on NTP technology and performance

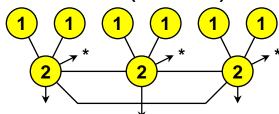
- NTP project page http://www.eecis.udel.edu/~mills/ntp.html/.
 - Network Time Protocol (NTP) General Overview
 - NTP Architecture, Protocol and Algorithms
 - NTP Procedure Descriptions and Flow Diagrams
 - NTP Cryptographic Authentication (Autokey)
 - NTP Clock Discipline Principles
 - NTP Precision Synchronization
 - NTP Performance Analysis
 - NTP Algorithm Analysis
 - Long-range Dependency Effects in NTP Timekeeping


NTP architecture review

- Multiple servers/peers provide redundancy and diversity.
- Clock filters select best from a window of eight time offset samples.
- Intersection and clustering algorithms pick best truechimers and discard falsetickers.
- Combining algorithm computes weighted average of time offsets.
- Loop filter and variable frequency oscillator (VFO) implement hybrid phase/frequency-lock (P/F) feedback loop to minimize jitter and wander.


The NTP subnet

department



workstations (stratum 4)

campus secondary servers (stratum 2)

Internet primary servers (stratum 1)

* to buddy in another subnet

- NTP synchronizes the clocks of hosts and routers in the Internet
- Time synchronization flows from primary servers synchronized via radio and satellite over hierarchical subnet to other servers and clients
- NTP provides submillisecond accuracy on LANs, low tens of milliseconds on typical WANs spanning the country
- NTP software daemon has been ported to almost every workstation and server platform available today, including Unix, Windows and VMS
- Well over 100,000 NTP clients and servers are now deployed in the Internet and its tributaries all over the world

NTP autonomous system model

- Fire-and-forget software
 - Single software distribution can be compiled and installed automatically on most host architectures and operating systems
 - Run-time configuration can be automatically determined and maintained in response to changing network topology and server availability
- Autonomous configuration (autoconfigure)
 - Survey nearby network environment to construct a list of suitable servers
 - Select best servers from among the list using a defined metric
 - Reconfigure the NTP subnet for best accuracy with overhead constraints
 - Periodically refresh the list in order to adapt to changing topology
- Autonomous authentication (autokey)
 - For each new server found, fetch its cryptographic credentials from public databases
 - Authenticate each NTP message received as sent by that server and no other
 - Regenerate keys in a timely manner to avoid compromise

Goals and non-goals

Goals

- Robustness to many and varied kinds of failures, including Byzantine, failstop, malicious attacks and implementation bugs
- Maximum utilization of Internet multicast services and protocols
- Depend only on public values and certificates stored in secure directory services
- Fast operation using a combination of public-key and private-key cryptography

Non-goals

- Administrative restrictions (multicast group membership control)
- Access control this is provided by firewalls and address filtering
- Privacy all protocol values, including time values, are public
- Protection against out of order or duplicated messages this is provided by the NTP protocol
- Non-repudiation this can be provided by a layered protocol if necessary

Autonomous configuration and authentication - issues

- Configuration and authentication and synchronization are inseparable
- Autonomous configuration (autoconfigure)
 - Centralized configuration management does not scale to large networks
 - Finding optimal topologies in large subnet graphs under degree and distance constraints is NP-hard
 - Greedy heuristics may not produce good topologies in acceptable time
 - Solution may involve span-limited, hierarchical multicast groups and add/drop heuristics
- Autonomous authentication (autokey)
 - Centralized key management does not scale to large networks
 - Symmetric-key cryptosystems require pairwise key agreement and persistent state in clients and servers
 - Servers cannot maintain persistent state for possibly thousands of clients
 - Public-key cryptosystems are too slow for good timekeeping
 - Solution may involve a combination of public and private key cryptosystems

Autonomous configuration - approach

- Dynamic peer discovery schemes
 - Primary discovery vehicle using NTP multicast and anycast modes
 - Augmented by DNS, web and service location protocols
 - Augmented by NTP subnet search using standard monitoring facilities
- Automatic optimal configuration
 - Distance metric designed to maximize accuracy and reliability
 - Constraints due to resource limitations and maximum distance
 - Complexity issues require intelligent heuristic
- Candidate optimization algorithms
 - Multicast with or without initial propagation delay calibration
 - Anycast mode with administratively and/or TTL delimited scope
 - Distributed, hierarchical, greedy add/drop heuristic
- Proof of concept based on simulation and implementation with NTP Version 4

NTP configuration scheme

- Multicast scheme (moderate accuracy)
 - Servers flood local area with periodic multicast response messages
 - Clients use client/server unicast mode on initial contact to measure propagation delay, then continue in listen-only mode
- Manycast scheme (highest accuracy)
 - Initially, clients flood local area with a multicast request message
 - Servers respond with multicast response messages
 - Clients continue with servers as if in ordinary configured unicast client/server mode
- Both schemes require effective implosion/explosion controls
 - Expanding-ring search used with TTL and administrative scope
 - Excess network traffic avoided using multicast responses and rumor diffusion
 - Excess client/server population controlled using NTP clustering algorithm and timeout garbage collection

Discovery mechanisms

- The emphasis here is on autonomous configuration and repair;
 discovery schemes in themselves are secondary
- NTP multicast and/or anycast modes used to discover servers within the same hierarchical group; groups may be tiled over Internet
- Ancestors of hierarchical group discovered from NTP peer data, augmented by NTP monitoring data
- Authentication verified by DNS lookup and MD5 message digest
- Database is synthesized from all these data and distributed to "interested" servers and clients
- Interested servers and clients run a heuristic algorithm to construct hierarchical subnet topology

Further information

- NTP home page http://www.ntp.org
 - Current NTP Version 3 and 4 software and documentation
 - FAQ and links to other sources and interesting places
- David L. Mills home page http://www.eecis.udel.edu/~mills
 - Papers, reports and memoranda in PostScript and PDF formats
 - Briefings in HTML, PostScript, PowerPoint and PDF formats
 - Collaboration resources hardware, software and documentation
 - Songs, photo galleries and after-dinner speech scripts
- Udel FTP server: ftp://ftp.udel.edu/pub/ntp
 - Current NTP Version software, documentation and support
 - Collaboration resources and junkbox
- Related projects http://www.eecis.udel.edu/~mills/status.htm
 - Current research project descriptions and briefings