The Highball Project

Profs. David L. Mills, Charles G. Boncelet, and John G. Elias
Electrical Engineering Department
University of Delaware
http://www.eecis.udel.edu/~mills mills@udel.edu

The Highball Project ﬂu

« The players, past and present

— Protocol design and synchronization algorithms: David Mills
— Scheduling algorithms: Charles Boncelet, Ajit Thyagarajan
— Hardware design and fabrication, John Elias

— Grad students: Paul Schragger (scheduling algorithms), Alden
Jackson (protocol simulation), Timothy Hall (control program and
hardware), timekeeping analysis (Kenneth Monington)

— The renewable Undergraduate Army also serves

. The resources

— DARPA/CSTO $849K over 4 years

— NSF/DNCRI $100K over 3 years, renewed $100K over 3 years
— U.S. Navy and U.S. Coast Guard $loose change

— DARTnRet nationwide testbed for synchronization experiments

— Dedicated Ethernet/FDDI LANs: 18 workstations, 5 routers, 2
special servers with total of 500MB RAM, 10GB disk and 3xT1 to
WANS

Target Applications

i

NWN MERT CNSF
BARN/WEST MIDN NCSA PSyNC
NCAR SURA NSFNET
SDSC SESQ Backbone

« WAN interconnect of high-speed LAN clusters (NREN overlay?)

e Additional targets include space tracking, telemetry, control and remote
sensing for NASA Space Station and similar applications

« Technology applicable to DARPA Multiple Satellite System at 10 Mbps,
NASA Advanced Communications Technology Satellite at 1 Gbps

 Possible alternative for city stoplights (scheduling algorithm)

 Provide alternative to ATM for high speed bursty users

Highball Architecture Qnu

Host
B
Processor
Data Enable Ethernet
or FDDI
Node
A @7 Processor
Crossbar
HPPI or Switch
SONET 5 Network Node

 Data are buffered only in the hosts or on network links, not in the nodes

 Hosts send reservation requests to local node, which encapsulates
them in periodic control bursts sent via multicast to all other nodes

 Nodes run a distributed scheduling algorithm which constructs
synchronous switch schedules for each node

e Switch schedule reconfigures crossbar just-in-time as bursts fly by

 Hosts gate data burst to local crossbar when enabled by local node

Assumptions ﬂu

Very low latency between host and local node

Very large delay-bandwidth product: 30 ms and 1 GHz typical

Data bursts are very large and occur relatively infrequently at each host

Network is transparent to data rate, transmission format and modulation
(with analog data interfaces and crossbar switches)

Transmission can be unicast or multicast and on-demand or scheduled

Service is intended for:

Transparent data rates and encoding formats; e.g., MSK codecs

Point-to-point and multicast isochronous applications; e.g.,
interactive visualization and motion video

Burst file transfers for national data forests and supercomputers

Real-time remote-sensing and data acquisition; e.g., ocean radar,
digital map retrieval

Scheduling Paradigms and Simulations ﬂu

Exhaustive enumeration of all paths (Trailblazer)

— Efficient probabilistic enumeration; baseline for complexity
evaluation

Selective augmentation of existing paths (Pathfinder)

— Computational efficient for most schedules; exceptions expected to
be rare

Breadth-first search (labeling algorithm)
— Adaptive techniques designed to reduce the impact of scaling

Schedule simulator implemented and tested
— Explore heuristics techniques

— Assist evaluation and comparison
Protocol simulator implemented and tested

— Explore initial-synchronization issues
— Determine impact of errors

Network Synchronization ﬂu

New Network Time Protocol (NTP) Version 3

Assured error bounds provided to users in new interfaces
Computations refined for accuracies to microsecond regime
Kernel modifications for precision timekeeping in Sun and DEC
NTP specified in Estelle (Darren New)

NTP security analysis (Matt Bishop)

NTP Version 3 specification RFC-1305 now draft standard

DARTnNet experiments

Ten sites with SPARCstation-1 routers and modified Sun kernels

Experiments showed many deficencies in kernel and daemon
timekeeping software, later corrected

Timekeeping enhancements

Cesium clock and LORAN-C receiver for precision timekeeping
GPS receivers with accuracy 100 ns relative to UTC
Inexpensive LORAN-C receiver for possible replication

Strawman Architecture Overview ﬂu

Host
B
Processor
Data Enable Ethernet
or FDDI
Node
A @7 Processor
Sinal ol Crossbar
mgg serial or Switch
multi-line copper
5 Network Node

. 3/4-node demonstration network

— Intended primarily as testbed for synchronization, reservation and
scheduling algorithms; links won't carry traffic until later

— Data transmission may be serial using commercial crossbar
switches or parallel using fabricated ones at 600Mbps to 2Gbps

— FDDI for reservation and backup data
— Node processors use SPARCstation IPC
— Host processors use Sun SPARCstation and DEC Alpha

Crossbar Switch and Controller ﬂu

[L]]

Data — 4 NXN
Lines Cros_sbar
Switch
Master Clock Slot Switch Enable
5 MHz Counter Controller — Lines
J—‘_’_L D Bus
FIFO
S Bus
Interface

e Master clock VCXO controls all node functions; synchronized with NTP
« Slot counter establishes duration of configuration

e Latched switch controller establishes configuration and enable lines

Timestamp Capture Qnu

R

Enable —— Counter Latched
Priority

Lines Array Encoder

R

Master Clock Clock Latch
5 MHz Counter

FIFO

S Bus
Interface

e Used to capture timestamps upon arrival and departure of hello bursts
e On counter overflow, enable ID and clock counter latched in FIFO

e Counters provide programmable delay for simulation and/or delay
compensation

10

Data Transceiver and Interface

i

Fibre In Fibre Out
RX + TAXI Receiver Transmitter TAXI + TX
Receive Receive Transmit Transmit
Data Control Control Data
Clock Enable Enable Clock
FIFO FIFO
S Bus
Interface

e Transceiver uses TAXI chipset and optical interfaces at 200 Mbps

« Can handle full-duplex transfers at DMA speeds

11

Control Transceiver

i

SBus
Interface

Information

Checksum

Postamble

Time

12

Link Delay Unit Qu

SERIAL_IN —1 Input Unit Delay Unit Output Unit — SERIAL_OUT

e Operates at link speeds of up to possibly several hundred Mbps
e Input and output units consist of 32-bit shift registers

e Delay unit operates as 32x1M FIFO

 PLO lockup time is basic switching-time limitation

 May use out-of-band network synchronization for preliminary evaluation

13

Reducing Average Reservation Delays ﬂu

Techniques borrowed from parallel, discrete-event simulation (PDES)

— Provides for control of network logical clock (not real-time)

— Preserves relative ordering of events (reservations)

— Requires analysis of state space and calculation of future
dependencies as the result of received reservation requests

Conservative (deterministic) techniques

— Search state space to develop dependency graph (lookahead)

— Advance logical clock when logical paths merge (Chandy-Misra)
— Detects when bursts can be sent early while avoiding collisions

Optimistic (nondeterministic) techniques

— Remember hello bursts and state transitions for some interval

— Detect schedule inconsistencies using message digest included in
hello burst.

— Notify hosts when inconsistency detected and rollback to prior
stable state (timewarp)

14

Early Commit ﬂu

Assume network topology and individual link delays are known in
advance

When a reservation is heard, save it and determine when it will arrive at
every other node until the destination

At each arrival run the scheduling algorithm to see if the burst can be
scheduled without conflict

— If so and a schedule has not been computed, compute the
schedule and delete the reservation

— If so and a schedule has already been computed, delete the
reservation

— If not, save the reservation and continue

When the reservation arrives at the destination, compute the schedule if
not already computed, and delete the reservation,

While this is compute-intensive, there are many heuristic optimizations

15

Reducing Vulnerability to Errors ﬂu

Note that nodes do not see the data, so don’t know if collisions occur

Assume that correct operation can be verified only by comparing the
schedules computed by each node with that for all other nodes

This can be done efficiently by including a crypto-checksum or message
digest (e.g., MD5) of the calculated schedule in every hello burst

Assume hello-burst synchronization is preserved, which amounts to an
out-of-band signalling channel

Assume bursts can only be lost (fail-stop) and uncorrupted
(non-Byzantine) in replicated, communicating, finite-state machine
model

Recovery from errors uses the same technique as optimistic PDES by
rolling back (possibly more than once) to a prior stable state and
running through saved hello bursts until missing burst(s) are found

This compute-intense operation is not expected to occur very often(!)

16

Synchronization Issues w

There are two ways to synchronize the network:

— Using NTP and occasional timestamps exchanged in hello bursts
— Using GPS or (cheap) LORAN-C timing receivers at each node

Experiments with NTP and conventional workstations suggest hosts
can be synchronized to the network to within a few tens of
microseconds using software timestamps; this requires:

— Minor kernel driver modifications which reduce timestamp latency

— SunOsS, Ultrix and OSF/1 kernel hacks to implement NTP
phase-lock loop in the kernel,

Where guard times in this order (i.e., a few kB at 1Gps), can be
tolerated, this avoids the requirement for the messy enable signal, since
the node can signal the host with the computed transmission time

For better accuracy, SBus interface can be used as a disciplined
(adjustable frequency) oscillator and set of software-readable counters

17

Lessons Learned w

Scaling up in size and speed can be easy or hard

The current rate of 1 ms/reservation is sufficient for an NSFnet
topology with 13 nodes and 2-ms frames, but not much larger

One approach is to scale the frame size with the number of nodes;
another is to use quasi-persistent scheduling in which the dwells
are adjusted incrementally as a function of node utilization

Synchronization turned out to be harder than it first appeared

All kinds of cruft appeared in the error budget due to sloppy
hardware and kernel code

The NTP algorithms had to be intricately tuned to extend the range
of operation to the microsecond regime

The toughest nut to crack is probably the robustness issue

The techniques of PDES are particularly promising
So are the techniques of fault-tolerant distributed computing

However, fault propagation needs to be studied and bounds
developed

18

Future Work

Algorithms

Improve scheduler speeds

Reduce reservation delays (Early Commit)
Reduce vulnerability to errors and node crashes
Design multicast NTP for synchronization

Hardware and software

Integrate strawman hardware and software components
Complete testing of Lowball board for Suns

High?ball

COMSAT Labs does all the work

We have all the fun

i

19

High®ball A .

e DARPA/NASA Advanced Communication Technology Satellite (ACTS)

— Satellite provides 622 Mbps in three satellite-switched beams to
selected earth terminals

— 3-meter antenna comes complete with 18-wheeler and concrete
base

— Satellite to be launched next year
— Experiments run up to three years

« HPCCI Proposal ($1.1M over three years)

— COMSAT Labs builds (3) 622-Mbps HPPI/SONET Multiplexors

— The Multiplexors are installed along with matching SPARCstations
at existing supercomputer sites

— UDel ports the Highball technology to ACTS

— UDel designs and conducts experiments using existing DARTNET
technology

20

Summary

Accomplishments

— Designed, built and tested reservation and scheduling algorithms
— Designed, built and tested precision synchronization technology

— Designed, built and tested prototype SBus interface

— Developed techniques to minimize scheduling delays and errors

Present status

— Second generation SBus FPGA interface complete and in test
— Kernel precision clock driver complere and in test

— NTP modifications for precision clock complete and in test
Future plans

— Integrate node controller, software driver and control program
— Complete FPGA firmware for switch controller and transceiver
— Complete design and implementation of protocol software

Further information: http://www.eecis.udel.edu/~mills

21

