
The Highball Project

Profs. David L. Mills, Charles G. Boncelet, and John G. Elias
Electrical Engineering Department

University of Delaware
http://www.eecis.udel.edu/~mills mills@udel.edu

The Highball Project

• The players, past and present

– Protocol design and synchronization algorithms: David Mills

– Scheduling algorithms: Charles Boncelet, Ajit Thyagarajan

– Hardware design and fabrication, John Elias

– Grad students: Paul Schragger (scheduling algorithms), Alden
Jackson (protocol simulation), Timothy Hall (control program and
hardware), timekeeping analysis (Kenneth Monington)

– The renewable Undergraduate Army also serves

• The resources

– DARPA/CSTO $849K over 4 years

– NSF/DNCRI $100K over 3 years, renewed $100K over 3 years

– U.S. Navy and U.S. Coast Guard $loose change

– DARTnet nationwide testbed for synchronization experiments

– Dedicated Ethernet/FDDI LANs: 18 workstations, 5 routers, 2
special servers with total of 500MB RAM, 10GB disk and 3xT1 to
WANs

2

Target Applications

• WAN interconnect of high-speed LAN clusters (NREN overlay?)

• Additional targets include space tracking, telemetry, control and remote
sensing for NASA Space Station and similar applications

• Technology applicable to DARPA Multiple Satellite System at 10 Mbps,
NASA Advanced Communications Technology Satellite at 1 Gbps

• Possible alternative for city stoplights (scheduling algorithm)

• Provide alternative to ATM for high speed bursty users

NWN MERT CNSF

BARN WEST MIDN NCSA PSCN JvNC

SDSC

NCAR

SESQ

SURA NSFNET
Backbone

3

Highball Architecture

• Data are buffered only in the hosts or on network links, not in the nodes

• Hosts send reservation requests to local node, which encapsulates
them in periodic control bursts sent via multicast to all other nodes

• Nodes run a distributed scheduling algorithm which constructs
synchronous switch schedules for each node

• Switch schedule reconfigures crossbar just-in-time as bursts fly by

• Hosts gate data burst to local crossbar when enabled by local node

A

D
Network Node

Node
Processor

Host
Processor

Ethernet
or FDDI

Data Enable

C

Crossbar
Switch

B

HPPI or
SONET

4

Assumptions

• Very low latency between host and local node

• Very large delay-bandwidth product: 30 ms and 1 GHz typical

• Data bursts are very large and occur relatively infrequently at each host

• Network is transparent to data rate, transmission format and modulation
(with analog data interfaces and crossbar switches)

• Transmission can be unicast or multicast and on-demand or scheduled

• Service is intended for:

– Transparent data rates and encoding formats; e.g., MSK codecs

– Point-to-point and multicast isochronous applications; e.g.,
interactive visualization and motion video

– Burst file transfers for national data forests and supercomputers

– Real-time remote-sensing and data acquisition; e.g., ocean radar,
digital map retrieval

5

Scheduling Paradigms and Simulations

• Exhaustive enumeration of all paths (Trailblazer)

– Efficient probabilistic enumeration; baseline for complexity
evaluation

• Selective augmentation of existing paths (Pathfinder)

– Computational efficient for most schedules; exceptions expected to
be rare

• Breadth-first search (labeling algorithm)

– Adaptive techniques designed to reduce the impact of scaling

• Schedule simulator implemented and tested

– Explore heuristics techniques

– Assist evaluation and comparison

• Protocol simulator implemented and tested

– Explore initial-synchronization issues

– Determine impact of errors

6

Network Synchronization

• New Network Time Protocol (NTP) Version 3

– Assured error bounds provided to users in new interfaces

– Computations refined for accuracies to microsecond regime

– Kernel modifications for precision timekeeping in Sun and DEC

– NTP specified in Estelle (Darren New)

– NTP security analysis (Matt Bishop)

– NTP Version 3 specification RFC-1305 now draft standard

• DARTnet experiments

– Ten sites with SPARCstation-1 routers and modified Sun kernels

– Experiments showed many deficencies in kernel and daemon
timekeeping software, later corrected

• Timekeeping enhancements

– Cesium clock and LORAN-C receiver for precision timekeeping

– GPS receivers with accuracy 100 ns relative to UTC

– Inexpensive LORAN-C receiver for possible replication

7

Strawman Architecture Overview

• 3/4-node demonstration network

– Intended primarily as testbed for synchronization, reservation and
scheduling algorithms; links won’t carry traffic until later

– Data transmission may be serial using commercial crossbar
switches or parallel using fabricated ones at 600Mbps to 2Gbps

– FDDI for reservation and backup data

– Node processors use SPARCstation IPC

– Host processors use Sun SPARCstation and DEC Alpha

A

D
Network Node

Node
Processor

Host
Processor

Ethernet
or FDDI

Data Enable

C

Crossbar
Switch

B

Single serial or
multi-line copper

8

Crossbar Switch and Controller

• Master clock VCXO controls all node functions; synchronized with NTP

• Slot counter establishes duration of configuration

• Latched switch controller establishes configuration and enable lines

N x N
Crossbar
Switch

Switch
 Controller

Master Clock
5 MHz

Enable
 Lines

FIFO

S Bus
 Interface

D Bus

Slot
Counter

Data
 Lines

9

Timestamp Capture

• Used to capture timestamps upon arrival and departure of hello bursts

• On counter overflow, enable ID and clock counter latched in FIFO

• Counters provide programmable delay for simulation and/or delay
compensation

Latched
Priority

Encoder

Latch
Master Clock

5 MHz

Enable
 Lines

FIFO

S Bus
 Interface

Internal Bus

Clock
Counter

Counter
Array

10

Data Transceiver and Interface

• Transceiver uses TAXI chipset and optical interfaces at 200 Mbps

• Can handle full-duplex transfers at DMA speeds

FIFO

Fibre OutFibre In

RX + TAXI

Receive
Control

 Enable ClockClock Enable

Receiver Transmitter

Internal Bus

FIFO

S Bus
Interface

Receive
Data

TAXI + TX

Transmit
Data

Transmit
 Control

11

Control Transceiver

–

SBus
Interface

Information Checksum

Time

Postamble

12

Link Delay Unit

• Operates at link speeds of up to possibly several hundred Mbps

• Input and output units consist of 32-bit shift registers

• Delay unit operates as 32x1M FIFO

• PLO lockup time is basic switching-time limitation

• May use out-of-band network synchronization for preliminary evaluation

Delay Unit Output UnitInput UnitSERIAL_IN SERIAL_OUT

13

Reducing Average Reservation Delays

• Techniques borrowed from parallel, discrete-event simulation (PDES)

– Provides for control of network logical clock (not real-time)

– Preserves relative ordering of events (reservations)

– Requires analysis of state space and calculation of future
dependencies as the result of received reservation requests

• Conservative (deterministic) techniques

– Search state space to develop dependency graph (lookahead)

– Advance logical clock when logical paths merge (Chandy-Misra)

– Detects when bursts can be sent early while avoiding collisions

• Optimistic (nondeterministic) techniques

– Remember hello bursts and state transitions for some interval

– Detect schedule inconsistencies using message digest included in
hello burst.

– Notify hosts when inconsistency detected and rollback to prior
stable state (timewarp)

14

Early Commit

• Assume network topology and individual link delays are known in
advance

• When a reservation is heard, save it and determine when it will arrive at
every other node until the destination

• At each arrival run the scheduling algorithm to see if the burst can be
scheduled without conflict

– If so and a schedule has not been computed, compute the
schedule and delete the reservation

– If so and a schedule has already been computed, delete the
reservation

– If not, save the reservation and continue

• When the reservation arrives at the destination, compute the schedule if
not already computed, and delete the reservation,

• While this is compute-intensive, there are many heuristic optimizations

15

Reducing Vulnerability to Errors

• Note that nodes do not see the data, so don’t know if collisions occur

• Assume that correct operation can be verified only by comparing the
schedules computed by each node with that for all other nodes

• This can be done efficiently by including a crypto-checksum or message
digest (e.g., MD5) of the calculated schedule in every hello burst

• Assume hello-burst synchronization is preserved, which amounts to an
out-of-band signalling channel

• Assume bursts can only be lost (fail-stop) and uncorrupted
(non-Byzantine) in replicated, communicating, finite-state machine
model

• Recovery from errors uses the same technique as optimistic PDES by
rolling back (possibly more than once) to a prior stable state and
running through saved hello bursts until missing burst(s) are found

• This compute-intense operation is not expected to occur very often(!)

16

Synchronization Issues

• There are two ways to synchronize the network:

– Using NTP and occasional timestamps exchanged in hello bursts

– Using GPS or (cheap) LORAN-C timing receivers at each node

• Experiments with NTP and conventional workstations suggest hosts
can be synchronized to the network to within a few tens of
microseconds using software timestamps; this requires:

– Minor kernel driver modifications which reduce timestamp latency

– SunOS, Ultrix and OSF/1 kernel hacks to implement NTP
phase-lock loop in the kernel,

• Where guard times in this order (i.e., a few kB at 1Gps), can be
tolerated, this avoids the requirement for the messy enable signal, since
the node can signal the host with the computed transmission time

• For better accuracy, SBus interface can be used as a disciplined
(adjustable frequency) oscillator and set of software-readable counters

17

Lessons Learned

• Scaling up in size and speed can be easy or hard

– The current rate of 1 ms/reservation is sufficient for an NSFnet
topology with 13 nodes and 2-ms frames, but not much larger

– One approach is to scale the frame size with the number of nodes;
another is to use quasi-persistent scheduling in which the dwells
are adjusted incrementally as a function of node utilization

• Synchronization turned out to be harder than it first appeared

– All kinds of cruft appeared in the error budget due to sloppy
hardware and kernel code

– The NTP algorithms had to be intricately tuned to extend the range
of operation to the microsecond regime

• The toughest nut to crack is probably the robustness issue

– The techniques of PDES are particularly promising

– So are the techniques of fault-tolerant distributed computing

– However, fault propagation needs to be studied and bounds
developed

18

 Future Work

• Algorithms

– Improve scheduler speeds

– Reduce reservation delays (Early Commit)

– Reduce vulnerability to errors and node crashes

– Design multicast NTP for synchronization

• Hardware and software

– Integrate strawman hardware and software components

– Complete testing of Lowball board for Suns

• High2ball

– COMSAT Labs does all the work

– We have all the fun

19

High2ball

• DARPA/NASA Advanced Communication Technology Satellite (ACTS)

– Satellite provides 622 Mbps in three satellite-switched beams to
selected earth terminals

– 3-meter antenna comes complete with 18-wheeler and concrete
base

– Satellite to be launched next year

– Experiments run up to three years

• HPCCI Proposal ($1.1M over three years)

– COMSAT Labs builds (3) 622-Mbps HPPI/SONET Multiplexors

– The Multiplexors are installed along with matching SPARCstations
at existing supercomputer sites

– UDel ports the Highball technology to ACTS

– UDel designs and conducts experiments using existing DARTNET
technology

20

Summary

• Accomplishments

– Designed, built and tested reservation and scheduling algorithms

– Designed, built and tested precision synchronization technology

– Designed, built and tested prototype SBus interface

– Developed techniques to minimize scheduling delays and errors

• Present status

– Second generation SBus FPGA interface complete and in test

– Kernel precision clock driver complere and in test

– NTP modifications for precision clock complete and in test

• Future plans

– Integrate node controller, software driver and control program

– Complete FPGA firmware for switch controller and transceiver

– Complete design and implementation of protocol software

• Further information: http://www.eecis.udel.edu/~mills

21

