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Abstract

The delay boundary prediction algorithms currently imple-
mented by transport protocols are lowpass filters based on au-
toregressive and moving average (ARMA) models. However,
recent studies have revealed a fractal-like structure of delay se-
quences, which may not be well suited to ARMA models. In this
paper we propose a novel delay boundary prediction algorithm
based on a deviation-lag function (DLF) to characterize end-to-
end delay variations. Compared to conventional algorithms de-
rived from ARMA models, the new algorithm can adapt to delay
variations more rapidly and share delay’s robust high-order sta-
tistical information (jitter deviation) among competing connec-
tions along a common network path. Preliminary experiments
show it outperforms Jacobson’s algorithm, which is based on
an ARMA model, by significantly reducing the prediction error
rate. To show the practical feasibility of the DLF algorithm, we
also propose a skeleton implementation model.

1 Introduction

In a best-effort packet switching network, packet loss statistics
are a good (in fact sometimes the only) means to estimate the
network congestion state. Conventional transport protocols de-
tect packet loss by a retransmission timeout (RTO); if after the
RTO an ACK is not received, the packet is retransmitted. Unfor-
tunately, if the RTO value is too small, the network is burdened
by an unnecessary packet; if too large, the application may stall.
In a window-based transport protocol such as TCP, a retrans-
mission event will cause the window to shut down, resulting in
a slow-start event and requiring several round trips before steady
state is achieved. Clearly, in order to maintain high throughput,
TCP needs to set its RTO properly to reduce the probability of
false alarms and speed up loss detection.

As network delays change with time, the RTO must adjust
as well. In TCP the adjustment is based on a real-time de-
lay boundary prediction using roundtrip delay samples (RTT)
and a lowpass filter to predict the smoothed roundtrip delay
(SRTT), and another lowpass filter to predict the mean deviation
(RTTVAR) between the SRTT and the measured RTT’s. The
delay boundary (or RTO) is then calculated as the sum of SRTT
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and RTTVAR multiplied by a constant factor k = 4. In addion
to the boundary prediction, TCP uses a crafted strategy to select
valid RTT measurements and to age RTO within a [MIN, MAX]
range. Detailed analysis of the TCP strategy can be found in
[15, 10, 9, 1].

The motivation to use a lowpass filter to predict the SRTT, as
explained by Jacobson in [9], is that the SRTT is expected to be
a mean RTT (or smoothed RTT), which can follow the chang-
ing delay trends common in the Internet. However, the physical
interpretation of the calculated SRTT has not been clearly iden-
tified so far in the literature, based on the authors’ knowledge.
We think it may be necessary to further clarify what the SRTT
really is. As we argue in the following Section 2, the traditional
lowpass filter used to calculate the SRTT is a least mean-square
error predictor of the RTT by modeling the RTT process as an
ARMA process, or more precisely the sum of a white noise se-
quence and a weighted Brownian motion sequence. The phys-
ical meaning of the SRTT is then that: if we model all the past
RTT samples as a realization of the assumed random process,
then the one-step best prediction of the next RTT is the SRTT.

Recent studies [4, 11] show that packet delay processes of
wide-area networks have a complex structure: a short piece
of a delay sequence densely sampled over a small time scale
should be modeled as a nonstationary segment, while a long
piece sparsely sampled over a large time scale should be mod-
eled as a long-range dependent (LRD) process. This means a
sequence of measured packet delays with an arbitrary sampling
period may be modeled as a stationary time sequence, a nonsta-
tionary one or a complex combination of both. We call this case
a multi-structure, which may not be well fitted by an ARMA
model (see Section 3 for detail explanation). Empirical studies
show that the multi-structure model better fits the observed data
[11].

We believe the delay variations in such cases are dominated
by queueing delays in the switches as the packet travels across
the network. Due to the mathematical intractability of queueing
analysis and traffic modeling, it is very hard to directly derive
an analytic model to accurately describe the characteristics of
queueing delays. For the purpose of calculating RTO, it may
not be necessary either. However, there are studies [8, 16] on
the jitter of tagged streams in ATM networks in which the prob-
ability density functions and correlation functions are derived
in explicit forms. In these studies, accurate statistical knowl-
edge about the background traffic and the tagged streams were
assumed, which may not be available in the rowdy Internet.

The main contribution of this paper is a heuristic model based
on the deviation-lag function (DLF) to characterize packet end-
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to-end delays (or queuing delays) and produce the delay bound-
ary predictions. Since the delays show different characteristics
(nonstationary vs. stationary) in different time scales, the ad-
vantage of using the DLF is that it can capture the statistical
features in both small time scales and large time scales. Also, a
reliable transport protocol may be only concerned about the de-
lays experienced by a tagged packet stream of its packets when
statistically multiplexed with other background traffic. Usually
the tagged stream is considered only a small contribution to the
background traffic and so does not affect the queueing delays.
Under this assumption, the DLF can provide a robust charac-
terization of network delays and connections across a common
network path may share the same DLF.

The rest of the paper is organized as follows. Section 2 ex-
plains the presumption about the SRTT estimator, and discusses
how to choose the parameters for the estimator to best fit differ-
ent conditions. In Section 3, we give a further reasoning on why
the delay sequences demonstrate different random structures in
different time scales. We then define and discuss the DLF itself
and present the delay boundary prediction algorithm. In Section
4, we use both periodic and Poisson distributed ping traces to
test the proposed algorithm and compare with Jacobson’s algo-
rithm. We show the proposed algorithm outperforms Jacobson’s
algorithm in terms of lower prediction error rate. In Section 5
we discuss the implementation issues and present a skeleton im-
plementation using a scalable and robust algorithm to maintain
the required tables. Section 6 summarizes and concludes this
paper.

2 Analysis of the SRTT Algorithm

The SRTT calculation widely implemented in TCP and many
applications to predict both the delay boundary and available
bandwidth is a lowpass filter. By further study of the delay
model assumed by the calculation, we may discover limitations
in its use and identify the conditions under which the SRTT is
suitable or not. At the same time, the study will motivate why
we propose a new algorithm.

In order to explore the model implicit in the SRTT calcula-
tion, let us assume that the delays can be modeled by

Rn =M +H(q)en (1)

where Rn is the nth delay sample, M is a constant representing
the mean RTT, fei; i = �1; : : : ; n � 1; ng is a sequence of
independent, identically distributed (iid) random variables with
zero mean and a certain variance. For convenience we introduce
the shift operator q in (1) by qen = en+1 and q�1en = en�1.
H(q) is a filter to be identified in the analysis. If applying sys-
tem identification theory [13] to this case, we can derive the nth
least mean-square error prediction based on all the past mea-
surements fRi; i � ng, that is

R̂n = H�1(q)M + [1�H�1(q)]Rn (2)

where H�1(q) = 1=H(q).
On the other hand, the SRTT is calculated using a low-pass

filter
R̂n = (1� g)R̂n�1 + gRn�1 (3)

where R̂n is the nth of SRTT estimates, Rn�1 is the n � 1st
delay measurement and g is a constant with range (0; 1). (3)
can be rewritten as

R̂n =
gq�1

1� (1� g)q�1
Rn (4)

Assume (3) is the nth optimal estimate of SRTT. Comparing (2)
and (4) and letting H�1(q)M = 0, we immediately discover
that

H�1(q) =
1� q�1

1� (1� g)q�1
(5)

which suggests that

H(q) =
1� (1� g)q�1

1� q�1

= 1 + g

1X
k=1

q�k (6)

H(q) is the filter we want to identify in (1), which means that
if we take (3) as the best estimator of SRTT in the sense of
least mean-square error, we have assumed that the delays can
be modeled by (1) with the filter (6).

We substitute H(q) in (1) by (6), so

Rn = Rn�1 + en � (1� g)en�1 (7)

or

Rn = M + en + g

1X
k=1

en�k (8)

which (7) indicates an ARMA model. (8) reveals more interest-
ing features about the model. From (8) we see that when g ! 0,
the delays is modeled by a white noise process, but when g ! 1,
a sequence of Brownian motions, which is a nonstationary pro-
cess. When 0 < g < 1, the delays are modeled as the sum of a
white noise process and a weighted nonstationary process. It is
clear that SRTT is not the estimation of the mean RTT (or M )
in the model (1), but the best real-time estimator of RTT based
on the model (8). Since fei; i = �1; : : : ; n � 1; ng with zero
mean, the unbiased estimator of M should be

M̂ =
1

n

nX
k=1

Rk (9)

(8) reveals the limitation of the SRTT estimate (3). With a
fixed g, as implemented in TCP, this method presumes that all
measured delay sequences can be uniformly modeled by (8),
independent of sampling method (regular or irregular), sampling
frequency (high or low), and the underling path characteristics.
This is certainly not true for the reasons elaborated in the next
section.

The low computing overhead of the current SRTT calcula-
tion makes it attractive for typical applications. (8) provides
insight in how to choose g for (3) under different protocol re-
quirements and network conditions. As further explained in the
next section, delay sequences densely sampled in small time
scales are more nonstationary in nature than stationary because
of the unavoidable queuing phenomenon in packet switches,
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while sparsely collected sequences in large time scales should
be considered stationary or quasi-stationary after canceling the
diurnal effect. Therefore, to match the model (8) closer to differ-
ent real situations and to obtain better performances of (3), we
should choose a large g when calculating the SRTT for packets
clustered together (a burst of packets), but a small g for a string
of packets sparsely separated from each other.

The question of which time scale best expresses the delay
characteristics in blending from nonstationary to stationary has
been studied in [12]. For the case of TCP, if we estimate the
SRTT only once per roundtrip time, corresponding to a sparsely
sampling case, a small g is desired; but if for every segment in
flight, we should choose a large g, so that the SRTT catches up
to the nonstationary process more quickly.

The above analysis suggests that the existing SRTT calcu-
lation method may not be optimal for all situations, at least if
using a fixed set of parameters. However, designing a parame-
ter adaptation scheme for the lowpass filter (3) which is optimal
under different conditions is also a nontrivial task. This obser-
vation motivated us to explore new ways to characterize delays
and develop new delay boundary prediction algorithms.

3 Prediction Algorithm

It is necessary to explore the nature of delay variations and the
correlation between measured delays in order to understand the
logic of our delay boundary prediction algorithm. In this sec-
tion we explain why delay sequences are multi-structured. Then
we introduce a powerful delay characterization tool the DLF.
Based on the DLF analysis we further introduce the concepts of
first-order and second-order delay dependencies. The existence
of the two types of naturally different dependencies illustrates
the limitation of the ARMA models we discussed previously in
Section 2. Finally in this section, we present the proposed delay
boundary prediction algorithm.

3.1 Characteristics of Delays

Based on Markov models, conventional queueing theory pre-
dicts that, if inter-arrival time and service time are both inde-
pendent, the queueing delays can be modeled as a regeneration
process [5]. A regeneration process includes many statistically
similar regeneration cycles, each of them corresponding to a
queueing busy cycle (see Figure 1 for the illustration of busy
cycle). Within each cycle, the queueing delay behaves like a
random-walk, which is a nonstationary process. Therefore, a
queueing delay process is nonstationary in time scales compa-
rable to the average regeneration cycle, or the average queue
busy period, but stationary in time scales much larger than that.

Because of the closed-loop feedback flow control mecha-
nisms used by transport protocols and the bursty characteristics
of application data, the arrivals are no longer independent and
Markov models may not be appropriate. A general queueing de-
lay process is no longer a pure regenerative process in the strict
sense. However, as time progresses we still see the queueing
system either in a busy period or in an idle period if the utiliza-
tion factor � < 1. If the queue buffer is large enough, within

each busy period the fluctuation of the queue length is still a
random-walk-like process, and should be modeled as a tiny non-
stationary process (or segment). Therefore, a queueing delay
process in general still maintains the same random structure as
a regenerative process — stationary as a whole but constituting
an infinite number of nonstationary busy periods. Due to the
bursty property of the incoming traffic, the average length of a
nonstationary busy period tends to be longer than that predicted
by Markov models under the same average arrival rate. More
precisely, since real traffic is long-range dependent, the behav-
ior of delays in small time scales corresponding to these busy
periods changes from a random-walk-like to a more fractal-like
[11].

In general, we may say that for a stable queueing system,
the queueing delays can be modeled by a stationary process
with nonstationary sub-processes. Such processes have what we
call a multi-structure, whose meaning will become clearer after
we introduce the jitter deviation-lag function (DLF) analysis in
Section 3.2. Furthermore, we will show that the multi-structure
model can also be applied to the case of end-to-end paths con-
sisting of multiple hops and used to predict end-to-end delays.

A transport protocol sees only the queueing delays of a tagged
packet stream in which its traffic is embedded. As a tagged
packet travels over a network path, it can in principle sample the
delays of all the queues along the path. If the intervals between
the interdeparture times of tagged packets are small compared
to the average busy periods of the queues, individual packets in
the stream will, with high probability, be able to take more than
one sample from the same busy period, as shown in Figure 1.(a).
This implies that the measured delay samples from the stream
will display a multi-structure characteristic. On the other hand,
if the intervals between tagged packets are much larger than the
average busy period, then the tagged stream will sample many
different busy periods, as shown in Figure 1.(b). In this case the
delay measurements fail to reveal the nonstationary structure of
the underlying busy period.

Figure 1 explains why the characteristic of a densely sampled
delay sequence is dramatically different from that of a sparsely
sampled one. An ARMA model with a set of parameters which
match one extreme will not be able to match the other. This is
why we began to explore the multi-structure model in the first
place.

3.2 Jitter Deviation-Lag Function Analysis

Since a densely sampled delay sequence may capture the multi-
structure characteristic, we need an analysis tool which can
clearly identify and quantify this characteristic. Conventional
queueing theory does not provide means to characterize queues
in a way that can display these features. Conventional autocor-
relation function analysis is useful for single-structure stationary
processes, but not multi-structure processes with nonstationary
cycles. Therefore in the following, we introduce an analysis tool
called the jitter deviation-lag function (DLF), which can charac-
terize delay variations in different time scales.

In order to show why we chose the jitter DLF analysis
method, we further explore what kind of nonstationary nature
a queueing delay process may have in small time scales. Define
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tjnt
1jnt

+1-jnt

An interval between densely tagged packets

(a)

V(t)

tjnt
1jnt

+1-jnt

An interval between sparsely tagged packets

(b)

Figure 1: A densely sampling case of V (t) (a) and a sparsely sampling case of V (t) (b). V (t) is an instance of a queueing delay
process.

ak = sk � �k+1, k = 1; 2; : : :, where sk is the service time
of the kth arrival and �k+1 the interval between the kth and
the k + 1th arrivals. The queueing delay V (t) in a busy period
t 2 [tnj

; tnj
+ bj ], where tnj

is the start time of the jth busy
period and bj its duration, can be calculated by

V (t) =

nX
k=nj

ak � (t� tn); (10)

where tn < t < tn+1, and tn is the nth arrival time. (10)
demonstrates that V (t) in a busy period can be calculated by the
sum (or integral) of a subsequence of ak. If ak is a white-noise
sequence, then mathematically V (t) will behave as a random
walk (or Brownian motion) process, which is nonstationary. If
ak is a long-range dependent sequence, as is more likely the case
in reality, V (t) will behave like a fractional Brownian motion
(fBm) process (see [11] for a detailed discussion). Both random
walk and fBm are nonstationary fractal phenomena [6] 1. There-
fore, a queueing delay process inherently has a fractal structure

1By definition, fBm is the integral of a stationary long-range dependent pro-
cess with Gaussian distribution, such as fractal Gaussian noise (fGn), while Bm
is simply the integral of white Gaussian noise. Both fBm and Bm are non-
stationary and self-similar. Bm is a special case of fBm with Hurst Parameter
H = 0:5.

in time scales smaller than the busy periods, regardless of the
arrival process, as long as the traffic can persist for some time in
the buffer queue.

A general way to characterize a nonstationary fractal process
is to conduct a scaling analysis, namely, to find out in what range
the process fluctuates when looking at the process in different
time-scales. This is similar to zooming in and out while look-
ing at the delay time series graph. A direct approach to char-
acterizing fractal processes is by defining the height difference
correlation function [14] as

C2(�) = fE[(ÆX(�))2]g
1
2 = fE[(X(t+�)�X(t))2]g

1
2 (11)

where X(t) is a fractal curve (or signal). C2(�) calculates the
deviation of the increments ofX(t) in time scale � . For a single-
structure, nonstationary fractal signal, C2(�) will have the form

C2(�) � �H (12)

where 0 < H < 1 is the Hurst parameter of the signal. (12)
shows that X(t) has a power-law scaling behavior in all time
scales (or all correlation lengths). Thus the logC2(�) vs. log(�)
plot will be linear over the scaling domain � 2 [0;+1) with
the slope of the plot equal to H . For example, an ideal fBm
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X(t) will produce such a linear plot with the slope equal to
its H over the entire scaling domain. However, If X(t) is a
multi-structure signal, such as, it behaves like fBm in small time
scales (or small � ’s) while stationary LRD noise in large time
scales (see Section 3.3 for further explanation on the concept
of multi-structure), then due to the multi-structure characteris-
tic, (11) may not show a uniform power-law scaling behavior as
(12). The linear pattern of the logC2(�) vs. log(�) plot may
break at some scale points (� ’s).

To see why the plot may depart from straight line, we expand
(11) as the following:

C2(�) = fE[X(t+ �)2] +E[X(t)2]� 2E[X(t+ �)X(t)]g
1
2

When � is small, C2(�) behaves like fBm, which is mono-
tonically increasing with � . However, when � exceeds a critical
value, say � > �B , a transition point occurs. At this point the
nature of X(t) changes from nonstationary (fBm) to stationary
(LRD) and E[X(t+ �)2] = E[X(t)2]. Furthermore, because at
this stage � has a relatively large lag, the dependency between
X(t+ �) and X(t) is very weak. Normally we have

E[X(t+ �)2] +E[X(t)2]� 2E[X(t+ �)X(t)]

so C2(�) is almost constant for � > �B . See Section 3.3 for an
example of C2(�).

Therefore, by calculating the height difference correlation
function we can determine whether a process has a multi-
structure characteristic or not based on the pattern of the func-
tion. We apply the height difference correlation analysis to the
delay sequences considered previously. Let X(t) be the delay
of a packet departing at time t, then C2(�) represents the stan-
dard deviation of the delay differences (jitter) of tagged packets
separated by a lag � . Note the mean of jitter is zero for a sta-
ble system. We will call this function the jitter deviation-lag
function (DLF).

3.3 The Typical Pattern of DLF

Empirically, we know a typical jitter DLF of a single queue
plotted in log-log scales may look like the curve shown in Fig-
ure 2.(a), which shows a multi-structure process. The DLF in-
creases with � monotonically when � is small. When � reaches
a critical scale point (�B), the DLF assumes a constant value af-
terward (� > �B). The two distinguishable sections of the DLF
before and after �B reflect two distinguishable scaling behav-
iors — nonstationary and stationary. The first slope section of
the DLF can be fitted to a power-law implying a fractal-like (or
self-similar-like) behavior with the Hurst parameter H equal to
the slope of this section. The second flat section (the constant
section) suggests a stationary, noise-like behavior. The transi-
tion area around point (�B , C2(�B)) can be clearly identified on
the DLF. �B is referred as the crossover scale-point of a delay
sequence from nonstationary to stationary. It means two things:

� If we down-sample the delay sequence with a down-
sampling period longer than �B , the extracted subsequence
will appear as a stationary process.

� A small window of delay samples randomly snipped from
the original sequence with the window width shorter than
�B will appear as a nonstationary process.

The transition point (�B , C2(�B)) and the shape of the transi-
tion area (a smooth transition against a sharp one) of the DLF is
determined by the traffic characteristics. We would expect that
�B equals the average queue busy period. Normally, under light
load conditions, the transition is smooth; while under heavy load
conditions, the transition is a sharp breakpoint of the DLF. Fig-
ure 2.(b) and (c) show the DLF for two ping traces. One trace
was produced while sounding the Internet using ping packets at
20ms intervals. The other was produced using the NS simulator
and a synthetic network. Both DLF’s show patterns similar to
Figure 2.(a), suggesting the multi-structure model indeed cap-
tures the behavior of typical network paths.

The nature of delay sequences measured over the span from
small time scales to large time scales depends on the background
traffic. If the traffic is memoryless, then a sequence will be-
have as Brownian motion in small time scales and white noise
in large time scales. However, if the traffic is long range de-
pendent (LRD), the sequence will behave as fBm in small time
scales and LRD noise in large time scales. See [11] for a detail
discussion on this issue.

3.4 The First-Order and Second-Order Depen-
dencies

In order to better understand how �B correlates with queue busy
periods, we introduce the concepts of first-order and second-
order dependencies. If two delay samples are taken from the
same busy periods, there will be a strong correlation between the
two samples due to the busy period’s nonstationary nature. We
call this type of correlation the first-order dependency. If sam-
ples are taken from different busy periods, the correlation will
be relatively weak. We call this type of correlation the second-
order dependency. The first-order dependency is invoked by
the queueing process or the buffer effect. But what causes the
second-order dependency? To show the nature of the second-
order dependency, we analyze a sampling scenario.

Assume Vnj
(t1) and Vnj+1

(t2) are delay samples taken from
different busy periods starting at time tnj

and tnj+1
respec-

tively. It is easy to see that Vnj
(t1)and Vnj+1

(t2) can be com-
pletely determined by the arrivals in the time period [tnj

; t1]
and [tnj+1

; t2] separately, because all busy periods begin with
an empty queue state. If there is no correlation between traffic
in the two periods, such would be the case with Poisson traffic,
then the two samples are independent. However, if the traffic
is LRD, then the correlation between the traffic in the two busy
periods could be significant and some dependency could exist
between them, which further invoke the dependency between
the delays. This is where the second-order dependency comes
from. Compared to the first-order dependency, the second-order
dependency is quantitatively very weak. The transition from the
first-order to the second-order dependency is the reason why the
DLF pattern changes from slope-fit to flat-fit around �B .

Since the first-order and the second-order dependencies are
caused by different mechanisms, so they are naturally different

5



lag log(τ)

(τB , C2(τB))

de
vi

at
io

n 
lo

g(
C

2(
τ)

)

(a)

−2 −1 0 1 2

−1.8

−1.6

−1.4

log
10

(τ) (sec)

lo
g 10

(C
2(τ

))

(b)

−2 −1 0 1
−1.8

−1.6

−1.4

−1.2

log
10

(τ)

lo
g 10

(C
2(τ

))

(c)

−2 −1 0 1 2

−1.6

−1.4

−1.2

log
10

(τ) (sec)

lo
g 10

(C
2(τ

))
(d)

Figure 2: (a) A typical pattern of jitter DLF, (b) the DLF of an Internet ping trace, (c) the DLF of a NS ping trace, (d) the DLF of
an Internet ping trace with more than two sections.

from each other. A densely sampled delay sequence may have
both types of dependencies, while a sparsely sampled one may
have only the second-order dependency. With an LRD back-
ground traffic, a sparsely sampled delay sequence will also be
LRD. The two types of dependency result in the multi-structure
characteristic illustrated previously. Having a clear picture of
this characteristic can help to make better use of delay mea-
surements in protocol designs, application implementations and
network state monitoring and diagnosis.

The first-order and the second-order dependencies also reveal
why ARMA delay models are inadequate to explain the multi-
structure characteristic. It is not possible to model the two de-
pendencies with a single ARMA model, especially because of
the abrupt transition between the two types of dependency. DLF
analysis, on the other hand, can show the transition in a clear
way, so it is an efficient tool to characterize multi-structure phe-
nomenon.

3.5 The Relation between Path DLF and Queue
DLF

A typical Internet path consist of multiple tandem queues along
the path. Under conditions where the Kleinrock independence
assumption is valid [3], then the DLF of the path is simply the
sum of the DLF for all queues; however, the sum may have
more than two distinguishable sections. The first section reflects
the behavior at the bottleneck link, while the remaining sections
show the behavior at other links. For example, the DLF in Fig-
ure 2.(d), which has three distinguishable sections, is calculated
from a ping trace of an Internet path. Due to the complexity of
Internet traffic and topology, each distinguishable section may
not necessarily be strictly linear, suggesting a more complex

scaling behavior. But no matter what traffic is involved, the
path DLF quantitatively characterizes how the delays vary in
different time-scales. Furthermore, as long as the Internet traffic
is stationary or quasi-stationary over a period of time, the path
DLF will be robust, no matter what it may look like. In fact, the
shape may serve as a distinguishing fingerprint of the path over
some period of time.

3.6 DLF Based Prediction Algorithm

Under the assumption that network traffic is stationary over
some period of time, the delay jitter characteristics of a tagged
stream with given lag will have a stationary probability distribu-
tion. The standard deviation of the distribution is one point on
the path DLF curve. The DLF curve summarizes the standard
deviations of all the stationary probability distributions as the
lag varies over the measured range. According to the Cheby-
chev inequality

P [jÆX(�)j > ÆXB ] �
C2
2 (�)

ÆX2
B

(13)

where ÆX(�) is the delay jitter of two packets with a lag � be-
tween them, C2

2 (�) is the variance of the delay jitter distribu-
tion, ÆXB is an assumed boundary. Note E[ÆX(�)] is zero. The
Chebychev inequality means that if we take ÆXB = 10C2(�)
as an example, then 99% of the ÆX(�) will fall into the range
[�ÆXB; ÆXB ], no matter what the stationary jitter probability
distribution may be. ÆXB provides a jitter boundary estimate
with 1% error probability.

Assume jÆX(�)j = jX(t2) � X(t1)j, and take ÆXB =
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kC2(t2 � t1). Invoking (13), we get

P [X(t1)�kC2(t2�t1) < X(t2) < X(t1)+kC2(t2�t1)] � 1�
1

k2
(14)

(14) means that, given the packet delay X(t1), we can predict a
boundary for the packet delay X(t2) by

X(t1)� kC2(t2� t1) < X(t2) < X(t1)+ kC2(t2� t1) (15)

with an error probability 1=k2. So the prediction algorithm is
simply: based on an earlier delay X(t1), and the DLF C2(�) of
a path, we can predict the delay boundary of a packet departing
at time t2 (t2 > t1) by (15) with a prediction error rate deter-
mined by the chosen k. We see that this algorithm is independent
of the DLF, as long as the background traffic is stationary.

If the jitter characteristics at different lags can all be fitted to a
normal distribution, then a k = 2:6 can achieve a prediction er-
ror rate less than 1%. In reality the jitter distributions may have
heavier tails than a normal distribution, which suggests a larger
k (> 2:6) may be necessary to achieve the same prediction er-
ror rate. Experiments described in the next section show that
k = 4 (far less than the 10 indicated by Chebychev inequality)
can actually achieve a prediction error rate less than 1%.

An important issue on implementing the algorithm is how to
construct and update the path DLF. Section 5 discusses this issue
in detail.

4 Performance Comparison

This section describes experiments to test the performance of
our proposed DLF algorithm by comparing it with Jacobson’s
algorithm. The experiments are done using a set of ping traces
with either equal interval, or Poisson interval between delay
samples.

Jacobson’s algorithm has three state variables — SRTT,
RTTVAR (RTT variation) and RTO (Retransmission TimeOut)
[1, 9]. The SRTT is calculated by (3) with parameter g = 1=8;
The RTTVAR is updated by a similar formula with a gain
g1 = 1=4:

RTTV ARn = (1�g1)RTTV ARn�1+g1jSRTTn�1�Rn�1j
(16)

and then the RTO is defined by

RTOn = SRTTn�1 + kjRTTV ARn: (17)

with kj = 4. For this study, we take the RTOn as the delay
boundary prediction of the nth packet calculated by Jacobson’s
algorithm.

Unlike Jacobson’s algorithm, which is driven by a single trace
for the prediction, the DLF algorithm involves two traces col-
lected at different times on the same network path. The trace
collected at an earlier time is used to calculate the path DLF
stored in memory as a table. A DLF table consists of multi-
ple rows but only two columns; the first column stores discrete
lags, and the second the corresponding DLF values. This table
is then used to predict the delay boundaries for the second trace
collected at a later time. The prediction is calculated as

RTTBn = X(tn�1) + kdC2(tn � tn�1) (18)

where RTTBn is the delay boundary prediction of the nth
packet, tn�1 and tn are the departure time of the n� 1st packet
and the nth packet, respectively. C2(tn�tn�1) is taken from the
table indexed by � = tn�tn�1. We choose kd = 3 in our exper-
iments in order to compare the two algorithms fairly. With these
values of kd and kj , the two algorithms running over the same
trace will produce roughly the same average boundary predic-
tions (E[RTTBn] = E[RTOn]). The goal of the comparison
is to see which algorithm can then produce a better prediction
of delay changes by determining how well the predicted value
bounds the next delay, as measured by the correct-prediction
rate (or probability). Of course, both algorithms will never fail
if kj and kd are chosen large enough, but in that case there can
be no basis for a fair comparison.

There are four pairs of ping traces measured from four cho-
sen Internet paths in the experiments. The two traces of each
pair were measured from the same path, one with equal inter-
val, the other with Poisson interval. Of each trace pair, the trace
with equal interval was collected roughly 1 minute earlier than
the trace with Poisson interval. Each one of the eight traces
was also divided into two half-traces; each half-trace contains
roughly 5000 pings spanning over roughly 100 seconds (corre-
sponding to an average sending rate pkt/20ms). The ping pro-
gram took a rest of 10 seconds between the collecting of the two
half-traces of each trace. We ran both the prediction algorithms
on all the second-half-traces, and saved all the first-half-traces
for constructing the DLF tables for the DLF algorithm. Table 1
gives a summary of the set of ping traces.

The DLF algorithm described above assumes that, if we try
to predict the delay boundary of a packet departed at t 2 based
on the measured delay of a packet departed at t1, we can always
obtain a jitter deviation C2(�0) from the DLF table precisely
indexed by a lag �0 = t2 � t1. But a trace, even with equal
interval, can only let us construct a table with discrete lags. The
step length of the lags in this case equals the ping interval. A
trace with Poisson interval may not even allow us to construct
a precise DLF indexed by discrete lags; we believe this may be
very likely the case if we would come to a point in the future to
implement the DLF algorithm.

We ran our experiments over the traces in three different sce-
narios:

1. Construct tables with precise DLF values indexed by dis-
crete lags based on traces with equal interval to predict the
delay boundaries of traces also with equal interval

2. Construct tables as above, but predict the delay boundaries
of traces with Poisson intervals. Since the lags between
pings may not be precisely matched by lag entries in the
tables. The compromise we make is to use the lag found
in the tables which is equal to or greater than the desired
value.

3. Construct approximate DLF tables with their lag entries
representing small lag domains (the whole lag domain is
divided into a number of small lag domains) instead of
unique lag values based on traces with Poisson intervals
to predict the delay boundaries of traces also with Poisson
intervals. In this case the lags between pings may fall into

7



Table 1: Summary of the ping traces collected from a common source
Trace Name Interval Type Min. Delay(ms) Loss rate % Destination
uk e Equal 96 0.04 UK
uk p Poisson 96 0.06 UK
ar e Equal 433 0.45 Argentina
ar p Poisson 433 0.40 Argentina
au e Equal 428 0.04 Australia
au p Poisson 428 0.00 Australia
us e Equal 76 0.26 USA
us p Poisson 76 0.14 USA

one of the small lag domains found in the tables. This sce-
nario is set to simulate a possible implementation of this
algorithm.

4.1 Scenario I: Boundary Prediction of Traces
with Equal Interval

In this experiment, the DLF tables are built from the first-half-
traces of traces with equal interval (T = 20ms). As we men-
tioned before, a DLF table consists of multiple rows but only
two columns. The first entry of each row contains the lag iT ,
where i is the row index of the table. The second entry of the
same row contains

C2(iT ) =

vuut1=(N � i)
N�iX
n=1

(X(tn+i)�X(tn))2 (19)

where N is the total number of the samples in the first-half-
trace. This table is used by the DLF algorithm to predict the
delay boundaries of packets in the second-half-trace of the same
ping trace. The DLF algorithm is initialized as

X(t0) = E[X(tn)]

RTTB1 = X(t0) + kdC2(1)

Where C2(1) is the second entry of the last row in the con-
structed table.

For comparison we ran both the DLF algorithm and Jacob-
son’s algorithm on the second-half-traces of trace uk e, ar e,
au e and us e all with equal intervals. We also repeated the ex-
periment on their downsampled subtraces with different down-
sampling periods. In this way we explored the performance of
the algorithms when applied to traces with different ping inter-
vals.

Figure 3 – 6 shows the experimental results. In all the fig-
ures, the x-axis marked as ”lag” represents the interval between
two pings in a subtrace, so each integer point on the x-axis rep-
resents a different subtrace (lag = 1 represents the original
trace). The y-axis indicates the correct prediction rate. The
figures show that, except the experiment on trace uk e and its
subtraces, which does not show a clear better performance of
DLF algorithm than that of Jacobson’s algorithm, the experi-
ments on the other three traces and their subtraces do show a
distinctively better performance of the DLF algorithm in that it

achieves a higher correct-prediction rate than Jacobson’s algo-
rithm, under the condition that both algorithms output approx-
imately the same average boundary predictions (shown in the
same figures; the differences are relatively very small compared
to the average boundary predictions themselves). In general,
there is roughly 3% average difference between the correct pre-
diction rates, which suggest a 60% improvement of the error rate
from an average 5% error-rate down to 2% error-rate. In other
words, the DLF algorithm avoids 60% of the false predictions
made by Jacobson’s algorithm. For trace uk e, the experimental
result shows the DLF algorithm outperforms Jacobson’s algo-
rithm on subtraces with small lags, but not on subtraces with
large lags.

4.2 Scenario II: Boundary Prediction of Traces
with Poisson Interval

In this scenario the DLF algorithm uses the DLF tables built for
Scenario I to predict the delay boundaries of the second-half-
traces of trace uk p, ar p, au p and us p, which all use Poisson
intervals. Note the tables are built from traces collected earlier
than the traces used in the prediction tests. Again, for compar-
ison we ran both the DLF algorithm and Jacobson’s algorithm
over the same half-traces and their down-sampled subtraces.

Figure 7 - 10 shows the experimental results. This time the
x-axis in the figures marked as ”average lag” means the average
interval between the pings in a subtrace. Each integer point on
the x-axis again represents a different subtrace as in Scenario
I. The figures clearly show that the DLF algorithm persistently
outperforms the Jacobson’s algorithm in all four cases roughly
by a 3% average gain in the correct prediction rates, suggesting
again a 60% improvement of the prediction error rate. Since the
DLF algorithm has made compromises when searching through
the DLF tables to select a lag slightly larger than the desired
one, one may expect that the average delay boundary predic-
tions of a trace and its subtraces calculated by the DLF algo-
rithm are larger than that calculated by Jacobson’s algorithm. If
it is always the case we can not confidently conclude that the
DLF algorithm does a better job, but the figures show that in
the cases of trace uk p and ar p, the DLF algorithm produces
larger average boundaries, while in the cases of trace au p and
us p the Jacobson’s algorithm produces larger average bound-
aries. The absolute difference between the two predictions is
still very small compared with the predictions themselves. So
we conclude it is justified to compare the performances of the
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Figure 3: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace uk e and its down sampled
subtraces.
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Figure 4: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace ar e and its down sampled
subtraces.

two algorithms under the settings described earlier.

4.3 Scenario III: Using Approximate DLF Table
to Predict Trace Boundaries

This scenario is designed to assess the realizability of a DLF
algorithm implementation.

In practice we may not have a periodically sampled delay
trace to construct a DLF table. However, it may be easy to col-
lect a trace with randomly distributed intervals between samples
from a path. That means we may not be able to build a table
with evenly separated discrete lags. Instead, an approximate
table from a randomly collected trace may be constructed. In
this case the lag entry of each row in the table does not simply
represent a single discrete lag iT , but a lag domain (or range)
[�i; �i+1), the second entry in the same row is calculated as

C2(i) =

vuut 1

N

LX
n=1

X
j

(X(tn+j)�X(tn))2 (20)

where j 2 f�i < tn+j � tn < �i+1; 0 < j < L � ng, L is the
length of the trace,N is the total number of sample pairs, each of
which consists of two delay samples with a lag �i < � < �i+1
between them. We see that C2(i) actually lumps together all
the jitter deviations with lags falling into the domain [� i; �i+1).
The DLF algorithm will simply pick up a lumped jitter deviation
from the table depending on which domain the lag falls into.

This raises an interesting question: how to divide the lag do-
main for the table? This question can be formally defined as an

optimization problem: Assuming C2(�) is the jitter DLF, f(�)
is the probability density function (pdf) of lags in a certain sit-
uation, and the lag domain has been divided in M + 1 small
sub-domains; find a set of lags 0 = �0 < �1 < �2 � � � < �M <
�M+1 !1, which minimize the mean-square error:

W = min
�i;i=1;2;:::;M

MX
i=0

Z �i+1

�i

(C2(�)� C2(i))
2f(�)d� (21)

where

C2(i) =

R �i+1
�i

C2(�)f(�)d�R �i+1
�i

f(�)d�

There is no explicit solution to this problem, so we do not
try to find the optimal divisions. Instead, to reduce the divi-
sion error, we visually check the jitter DLF and the lag pdf, and
devise a division scheme that takes into account the generic pat-
terns of both C2(�) and f(�). It is obvious that more entries in
the table allow the algorithm to produce better predictions, but
greater overhead. A certain tradeoff is necessary. The lag do-
main division scheme we choose in this experiment is: M = 8,
�1 = 0:01sec, �i = �i�1 + 2i�1�1, 2 � i � 8. The subdo-
mains are exponentially expanded as in Table 2. The reason for
choosing the sub-domains this way is suggested by considering
the typical patterns of lag pdf and jitter DLF; the lag pdf has a
exponential decaying tail, which is true in our case, and the jitter
DLF approaches a fixed limit.
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Figure 5: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace au e and its down sampled
subtraces.
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Figure 6: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace us e and its down sampled
subtraces.

In the experiments, we constructed the approximate DLF ta-
bles from the first-half-traces of trace uk p, ar p, au p and us p,
and ran the DLF algorithm over the second-half-traces of the
same traces and their down-sampled sub-traces, as in Scenario
II. Jacobson’s algorithm already ran over these traces in Sce-
nario II. We only kept 8 rows in the DLF table. When a lag in
question larger than �8, the table search of the DLF algorithm
would simply return the C2(8).

Figure 11 - 12 shows the experimental results. In all cases the
DLF algorithm in this scenario generates slightly larger bound-
ary predictions than that in Scenario II, probably caused by the
coarser lag resolution, but better correct prediction probabili-
ties, roughly 1% gain on average over Scenario II. Based on the
experiments it may be fair to draw the conclusion that the ap-
proximate DLF table does not degrade the performance of the
DLF algorithm.

5 Implementation

The advantage of Jacobson’s algorithm is its low computing
overhead and on-line implementation. The disadvantage of Ja-
cobson’s algorithm is its over-conservative initialization, which
costs the algorithm at least 20 roundtrip iterations to converge to
the true predictions, and its lack of robust statistics to be shared
among connections across the same network path. Jacobson’s
algorithm does not work well with short-lived connections, in
which the senders and receivers only exchange a small number
of packets.

The advantage of the DLF algorithm is that the DLF table
is robust, and can be shared by many connections across the
same path. Also, each prediction always uses the most recent
delay measurement as the prediction base, so it provides good
adaptation to changing delay trends. The disadvantage of the
DLF algorithm is the overhead of maintaining the table. The
prediction itself is simply a table search, so the success or not of
the DLF algorithm may depend on whether or not we can design
a low overhead, heuristic algorithm to construct the table.

We present here a framework for implementing the DLF algo-
rithm. The basic idea is that a host runs a process called Table
Builder (TB) in the background (similar to the proposed Con-
gestion Management process [2] for a host, or combine them
together so they can share the common state variables); TB is
responsible for constructing the DLF tables for each path. The
transport protocols communicate with the TB to get the neces-
sary table before they launch a communication session with a
remote host. If the TB fails to provide a DLF table for a re-
mote host, implying there has never been a communication be-
tween the two hosts, or they did not communicate with each
other for a long time, the transport protocols can switch to a
backup scheme, such as Jacobson’s algorithm.

Issues on what data structure the TB process uses to store
these tables or how to cache them in memory or store them in
disk are beyond the discussion here. We concentrate on how a
TB process can build a good DLF table for a remote network
host.

There are two important issues related to building a good DLF
table: the table size and the table updating scheme. Based on
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Figure 7: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace uk p and its down sampled
subtraces.
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Figure 8: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace ar p and its down sampled
subtraces.

our experiments in Scenario III, we believe an approximate DLF
table with 8 � 2 + 1 entries is good enough for the prediction.
Here an extra entry beyond the last stores the mean delay of
the path (not the SRTT) for initializing the algorithm. If the
lag division scheme is fixed as in Scenario III, each table needs
8 + 1 entries. If we need only a conservative coarse boundary
prediction, 4 + 1 entries may well serve the purpose, since in
the tables built in Scenario III the last 4 entries were very close
to each other. In the extreme we may need only 1 + 1 entries
for the table and it stores only the jitter deviation corresponding
to the largest lag. Even with this simplification, the table can
still give relatively better boundary predictions for short-lived
connections than Jacobson’s algorithm.

If the network traffic is stationary, the DLF table needs to be
built only once forever. Unfortunately, network traffic in general
is nonstationary (such as daily change trends); it may be consid-
ered as stationary only within certain period of time [17, 7]. To
illustrate the nonstationary property of the network, Figure 13
shows how the DLF curves (in logarithmic scale) of the four
paths studied above change with time. Each curve of the figure
is calculated from a ping trace spanning over 200s, roughly with
10,000 samples (50 pings/sec). The four ping traces for each
path were collected consecutively, but separated by 30 minutes.
We think a trace with 10,000 samples is large enough to obtain
a converged DLF curve. This figure shows that the DLF curves
after 30 minutes do more or less shift away beyond the statis-
tical error margins, clearly indicating a nonstationary process.
Therefore, the TB needs to continuously update the DLF tables.

The updating scheme we propose has two parameters: the

DLF table valid period (dlf age), and the maximum number of
jitter samples (max num jitter) needed for calculating each
entry of the table. we suggest dlf age = 15 minutes, and
max num jitter = 200. The TB process needs to maintain a
queue of timestamped delay measurements for each path. Each
new delay sample plus its timestamp will be inserted into the
queue. After an inserting action all the delay samples with
timestamps earlier than the newest timestamp by �8, the largest
lag entry of the table, will be deleted from the queue (in this way
the TB only maintains a relatively small window of delay mea-
surements for each path); then the TB will start a new round of
updating table entries. For any entry of the DLF tables if the TB
process already counts enough jitter samples before the current
valid period is over, it will stop updating this entry. When mov-
ing from one valid period to another, the TB process will not
simply abandon all the entries. An entry can be aged according
to the following formula:

new value =

[ (max num jitter � num sample) � old value

+

vuutnum sampleX
n=1

jitter sample2n ]=max num jitter

where num sample is the total number of jitter samples ob-
tained by the TB process so far for a entry within the current
valid period, old value is the old entry value inherited from the
previous valid period, new value is the new entry value and
jitter samplen is the nth jitter sample. This aging formula
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Figure 9: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace au p and its down sampled
subtraces.
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Figure 10: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace us p and its down sampled
subtraces.

will produce a smooth transition from one valid period to an-
other and if the TB process can collect sufficient samples within
a valid period, the entries will be completely updated. Obvi-
ously we can use a similar aging formula to update the mean
delay entry.

The running time of the updating algorithm is

O(num table entry �max num jitter=dlf age):

To deal with the scalability issue the TB process needs only
cache the recently used paths, and save the remainder on disk,
if justified. Considering that there can be a large number of
TCP connections in a busy web server, we may need a garbage
collection scheme to delete tables for very old non-active paths.
Each table entry may also maintain a record value field to store
the largest entry values seen so far. When a path changes from
non-active to active, the TB process can copy the record value
fields to the entries’ old value fields. This is a conservative way
to initialize the table when a path goes from non-active to active.

The skeleton implementation presented here leaves many
open issues for future studies, such as the initialization of the
DLF table, definition of active and non-active path, passive (as
we proposed here) versus active (a dedicated protocol based on
ping) construction of the DLF table.

We strongly feel that a well tuned TB process is crucial to the
success of the DLF algorithm in the future. More experiments
show that, by choosing kd = 4 for (18), the DLF algorithm
can achieve a prediction error rate less that 0:5%. Even with
kd = 4, the DLF algorithm still gives a boundary prediction
well below the initial value assigned by Jacobson’s algorithm.

For short-lived connections the DLF algorithm is definitely a
winner. Since it has an architecture similar to the proposed con-
gestion management (CM) algorithm, we may find ways to com-
bine them together to further reduce the overhead of maintaining
the DLF tables.

6 Conclusion

An improved understanding of the nature of wide-area network
delays can help us to design better delay boundary prediction al-
gorithms. By rethinking the model implicit in the conventional
SRTT calculation, we learnt that SRTT is not a good mean esti-
mator of RTT, but the best real-time estimate of RTT based on
an ARMA model. The ARMA model suggests that for delay
sequences showing a strong nonstationary properties, the SRTT
calculation should choose a large parameter g < 1, but for white
noise sequences, a small parameter 0 < g is required.

We developed a new model — a multi-structure model to ex-
plain the random properties of delay sequences, and a new algo-
rithm based on the deviation-lag function (DLF) to predict delay
boundaries. The algorithm applies the Chebychev inequality of
probability theory. Experiments showed that the DLF algorithm
outperformed Jacobson’s algorithm roughly by a 60% improve-
ment in average prediction error rate. It also adapted faster to de-
lay changes than conventional algorithms derived from ARMA
models. The DLF algorithm needs to build a DLF table in ad-
vance, introducing more computing overhead than that of Jacob-
son’s algorithm. In order to show the possibility of doing a real
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Table 2: The lag domain division scheme (in second)
[0, �1) [�1, �2) [�2, �3) [�3, �4) [�4, �5)
[0, 0.01) [0.01, 0.03) [0.03, 0.07) [0.07, 0.15) [0.15, 0.31)

[�5, �6) [�6, �7) [�7, �8) [�8, 1)
[0.31, 0.63) [0.63, 1.27) [1.27, 2.55) [2.55,1)
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Figure 11: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace uk p and ar p and their down
sampled subtraces when using approximate DLF tables.

implementation, we presented a skeleton model for the DLF al-
gorithm, which includes a Table Builder (TB) process running
on the background. We designed a scalable and robust table en-
try updating algorithm for the TB. Since the architecture of the
proposed skeleton is similar to that of the proposed Congestion
Management algorithm, we suggested combining them together
to reduce the overhead for building DLF tables.
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Figure 12: The correct-prediction rates (a) and the average predicted delay boundaries (b) of trace au p and us p and their down
sampled subtraces when using approximate DLF tables.
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Figure 13: The deviation-lag functions of paths (a)uk, (b)ar, (c)au, (d)us.
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