T HE UNIVERSITY C F M I Cdl1GAN

Memorandum 24

KAMP Architecture in a

Utility Calculator System

Cavid L. Mills

CONCCHMP: Research in Conversational Use ot Computers
F.H. Westervelt, Prcject Director
CEA Froject 07449

supported ty:
ALVANCED ELSEAKCH FRCJECTS AGENCY

DEPAKTMENT OF LEFENSE
WASHINGTON, b.C.

CCNIRACTI NO. L[A-49-083 OSA-3050
ARPA O&DER NC. 716

administered througu:

OFFLCE OF hESEARCH ADMINISTRATION ANN ARBCK

May 19e€S

RAMP Architecture 1in a Utility Calculator Systenm

ABSTRACT

This report describes an experimental multi-user
utility calculator system similar tc PIL, BASIC and FOCAL,
put 1mpiementeu as a subsystem in KAMP, a mwmultiprograaming
system described elsewhere. The teatures or this systenm
include text editiny, statement interpretation and
expression evaluation as 1in the other systems citea. In
addaition, thls system provides the «capability of multi-
tasking at the source language level. Thus each user can
specity a proyram structure ccnsisting oif a number of
asynchronous tasks which interact with each other in
interesting ways.

L

(L

This report was prepared using FORMAT, a ccmputer
program in MTS, the Michigan Terwminal System. This progranm
. 1s described in: Berns, G.M., Description_of FORMAT, a_Text-
Processing _Program, <Conn. ACM, 12, 3 (March 1969), ppe
141-146. The text was entered to this program partly in
punched-card torm and partly directly <from a typewriter
terminal and was printed on an IEM 1403 printer egquipped
with a TN print train.

RAMP Architecture 1n a Utility Calculator Systen

TABLE OF CONIEN1S
1e 1INtLOQUCLION ecavevecmcecssccnssaccnscsnsssssccasesannssass |
2. Systel ALCHItECLULE .caceeccencsnnssscmsccncsscacnsased
3. Languaye SpecCifiCatiONs eeceecesssssecsssenmsnvcmancscasncel
3.1 EXPLESS1ONS eosemseonscsnancsencsssscascsncscssnnnsl
3.2 StAtECMENLS eeseesensnosasccsesnscsmcscssonnssacnsenll
4o Operating CONVENtICNS ecesccesvsannsssnnonsnssscananass il

De Reteiences .'l‘.0001‘0‘-wvta.-.nt..QC..O.Q..;..O:....Q“6

Appendix A. Lrrcr DiagnostiC DICt1ONACLY +ecccesseccscasessl?
Appendix B. A Recursive Program to Calculate Factorials .18

Appendix C. A Number-Cruncher to Calculate Transmpission
Lll)e ClzdraCtEI:istics -..-'QQQ."-.“'O‘..".."......C.‘ig

RAMP Architecture in a Utility Calculator Systen 1

1. INTHODUCTICN

As an experiment not only in an application of the
techniques aiscussed in the various KAMP reports (see
references at the end of this repgcrt) but in the utility of
carrying the nmultiprcgramming operations to the statement
level 1n an algebraic proygramming systen, a utility
caiculator similar to PIL, EASIC and FOCAL has been
1mplemented around the basic KAMP supervisor. Besides being
capable otf sustaining several users simultaneously, the
system allows each user to define and execute a number of
asynchronous tasks which <can interact with e€ach other in
interesting real-time fashions.

The system 1is written for an 8K PDP-8 with an
additionai teletypewriter intertace. This provides a two-
aser system which can be expanded without reprogramming by
adding more teletypewriter interraces to serve as many users
as reascnabie Wwithin memory-size and resgonse-tine
limitatious. In the current implementation a memory space
of about 7000 characters is available ror storage of user
progyrams ana data. This space, shared among all users, is
useu for the lines of the user's stored programs, for the
data structures created by the various tasks, and tor
miscellaneous butfers and control blocks which are allocated
and deallocated as multiprogyramminyg operations proceed.

The tacilities available to each user 1include the usual
arithmetic-expression interpretaticn common in other similiar
languages., Variables are structured as scalars or arrays of
any dimensionality. The SET statement is used to assign the
value ot an expression to a variakbtle and the TYPE statement
LS used to print the value of an expression. Conditional
pranching among the liines of a4 stored program can be
specifiea with the GC and IF statements and the branch line
numbers of these statements can be computed. Most o¢f the
coamnon unary and binary operaticns and transcendental
functions of one variable are inplemented, as well as a
complete set ot I,/0 formattirg and ccnversion functions.

The most significant udeparture trom convention in this
system 1s 1ts multiprcyramming capability. 1In the language
in which the user writes his programs, a subroutine call (DO
statement) 1s actually a task 1nvocation. In addition,
tasks may be 1uvcked to list a user-detined stored frogram
or to jrint thne values assigned the currently allocated
variables. The 1nvoking task may be speciried to proceed in
parallel with the invoked task ol may be specified to wait
tor i1t. Thus, 1t 1s possibie to specity a number of
"simultaneous" tasks which perform various functions and
interact with each other in interesting ways.

1. Introduction

2 RAMP Architecture in a Utility Calculator Systen

Statements entered to the system via the teletypewriter
keyboard are interpreted immediately in the order entered,
while statements entered via the stored program are
interpreted sequentially in the order of increasing line
numbers, as modified by conditicnal branching statements.
Each statement entered in either of these ways is treated as
an independent task-scheduling operation, so that each user
can be assured some pracessing even if another user hangs
nis stored program in a do-nothing lcop.

Input/output queueing and line-editing operations are
integral to this system in the same fashion as cther KAMP
systems and special device =support cam be added in the
fashion popular with these systeams. 1In particular, high-
Speed tape and data transmission equipment and display
devices can te supported easily with only minimal
reproyramming.

1. Introduction

RAMP Architecture in a Utility Calculator Systenm 3

2. SYSTEHN ARCHITECTURE

The supervisory sections of this system include the
buffer management, storaye allocation, task scheduling,
device 1interface, 1/0 utilities and initialization segments
of the Lkasic KAMP system (see reterence). The operator's
console teletypewriter service routines are scaled down
somewhat, since scme of the features are unnecessary in this
system. The command language interpreter is restructured so
that commauds (or statement lines as they are called in this
Systeuw) can be entered eitner directly rrom the keyboard or
indirectly trom the stored program. The stored program is
implemented as an internal rile indexed by line number. It
1s maintained in packed tormat, two characters per PDP-8
wWOrd, and can be edited by line numker in the conventional
fashion as 1in other similar systems. Figure 1 shows the
structure of a line of the stored program.

R —————————-— +
| LENGTH OF THIS LINE |
e e ————— - +
| LINE NUMBER i
R e +
| LINK TC N&XT LINE |
$mmm ————————————— +
| TEKT (PACKED TwO |
+ CHARACTERS PER +
| W0 kD) ;
e +

Figure 1. Stored Program Structure

A commana task, called the real-time task, is
assoclated with each teletypewriter console at system
initialization. The parameters tc this task include device
table pcinters for the command source and sink devices,
control switches and dictionary jpointers for the stored
prograw and aata structure associated with this task.
Commwands entered via a command Source daevice can start other
command tasks, calied stored-program tasks, which take input
Lrom the stored program. Such tasks can be specifiea eitaer
to process the statements or to simply list the lines of the
projram toyether with their line numbers. The parameters to
these tasks =specify dictionary pointers for the data
structures the task has created and the current liane number.

A tioatiny-polnt lnterpreter was coded specially for

this system, since the DiC-supplied version was: a) too
slow, L) too larye, c) too inaccurate, d) could not cperate

2. System Archlitecture

4 RAMP Architecture in a Utility Calculator System

in an extended-memory ~ environment. The current
implementation 1includes recoded versions or the DEC
transcendental functions and input-output ‘conversion
functions. The formats of tfloating-point instructions and
operands are compatible with those of the DEC
implementation.

The basic RAMP I/O. input formatting utilities were
moditied for use in this system to provide interfaces to the
floatinyg-point input conversion and expression-scanner
routines. The ccomon interface to these routines provides a
single subroutine call, with the exits providing information
as to whether the input string was a constant, a letter
striny, or a special character. Constants are converted by
this subroutine from the external character-string
representation to the internal floating-point
cepresentation. Only the first and last letter in letter
strings are retained and the resulting two-letter name nmay
represent a ccommand name, a variable or array name, or the
name or an arithmetic function. An internal dictionary is
associated with names 1in each ot these classes and the
entries 1in each class are assumed unique, The variable
names created by each stored-program task in the system may
@ltner be assoclated with a dictionary unigue to that task
or may be associated witn the dictionary belonginy to the
real-time task. The names of statements and arithametic
functions and the interpretation of special characters are
assoclated with tixed dictionaries shared by all tasks (and
thererore all users) in the systen.

Variables anud arrays are stored in this system as a
data structure in tne form of a downward-pranching binary
tree. At the apex of this tree and alony the leftward-
branching thread are the modaes associated with the variable
names and their current values currently allocated to tae
taska. A riyghtward-tranching 1link to a node 1naicates a
Singliy-subscripted retference (a vector), and the 1leftward-
branching thread originating at that node contains the
collection of all singly-subscripted elements currently
defined together with their values. At each of these nodes
in turn a rightward-branching link to a node indicates a
doubly subscripted reterence (a two-dimensional array) and
tne leftward-branching thread originating at the node
contains the ccllection of all dcubly subscripted elements,
thne first subscript ot which 1is identitied by the
originatinyg node. In this fashion a data-structure
Fepresenting a collection of variakle names each designating
4 scalar, vectcr, or array ot indeiinite dimeasiocnality can
be represented. A typical structure 1is diagrammed in Figure

2. Note that the subscripted elements of one dimension are
disjoint froam those of another, since they lie in different
lertward-branching threads. Taus, no mappinyg function can

2. Systew Architecture

RAMP Architecture in a Utility Calculator Systenm 5

exist between, say, linear subscripts of one dimensicn and
those ot a higher dimension. Alsc note that a creation of
an element of dimensionality n implies a creatiom of an
element of all dimensioanalities less than n.

R T et P 3

| VAR NAME/SUBSCKRIET |

pmm e e o +
] LINK TO NEXT ENIKY |
fmmmm e ———— e = +
] LINK TC CCHMPONENTS i
pmm— e — e e — e ¢
| |
+ +
| VALUE (THKLE WCEDS) |
+ +
| |

Figure 2. Data Structure

Integral to this system 1is an expression scanner
podeled after that implemented in tne MAD/1 ccmpiler, as
described 1n retference 3. This systexr uses a similar
algorithm, but with the addition of several ccntext-
dependent transformations which provide machinery to parse
exceptional syntactic cases. Unlike the MAD algorithm this
version interprets the parse in real-time; that 1is, each
atomic expressicn consistiny of a single arithmetic oferator
and its operands is interpreted as 1t is identitied in the
left-to-rignt scan. cach call- to the expressich scanner
causes the stack to be allocated (but not wusing the
comparatively slow system storage-allocatioa facilities) and
the value of the expression tc be computed. These
operations proceed to coampleticn without involving a task-
sWwitching operation.

The basic statement scanner calls on the expression
scanner to parse phrases cf the form:

Var (€Xp,eXPyeese) T€XE ,€XDP o

In such cases the expressicn scanner 1s called one or more
times to evaluate the subscript expressions indicated
between the parens, and the indicated waata structure is
allocated and assigned to the particular task interpreting
tne phrase. Then the expressions atter the equal sign are
scanned each in turnm and thelr values assigned to the
structure at the indicated subscript element and to each

2. System Architecture

6 RAMP Architecture in a Utility Calculator Systen

succeeding element (tormed ky 1incrementing the last
subscript expression by one) 1in tura.

All operations involving program and data-structure
storage make use of the system storage-allocation
facilities. Storage is allocated to an element of a data
structure only wnen necessary to store a value. Storage
assigned a data structure element is deallocated when the
allocating task terminates or by an explicit statement.
sStorage allocated the lines of the program is allocated and
deallocated as line-editing operaticns reguire, but may be
completely deallocated at any time bty an explicit statement.

2. System Architecture

RAMP Architecture in a Utility Calculator Systen 7

3. LANGUAGE SPECIFICATIONS

Followiny 1is a rudimentary "user's guide" to the
languagye specifications and operation of the systen.
Although the tacilities offered in this implemeantation are
certainly adequate for the purposes here, namely to explore
the multiprogyramming utility, a mocre "userized" system would
include several additional belis and whistles.

—— ey vty

A variaple_name 1is represented by a single letter
tollowed optionally Ly either a letter or a digit. More
than one letter or digit may follow the initial 1letter but
1a such cases only the last c¢f these is sagnificant.
Variables are used in arithmetic, line number, and subscript
expressions, and as task variables (see below). A variable
1s represented internally as a flcating—-point number with a
value between about 106i7 and 10617 to a precision of about
seven digits. An array nauwe consists of a variable nanme
tollowed by a 1list of subscript_expressions separated by
commas and enclosed 1n parentneses. The interpretation of
variables and arrays ccrrespcnds to the usual MAD or FORTRAN
interpretation. Note that, however, no explicit mappings
between muliti-dimensional notations are implied. That is,
the elements at A1) (i=1,2,...) and A(i,j) (1,3=1,2,%.)
are always disjoint and no mapping tuanction canh be deftined
between thewm. The digension of an array name is the number
of such expressions and no bound is placed on the number.

A constant is represented 1in conventional <flcating-
point feormat and may take on values rrom 10-617 to 10617,
The external representation of the constant may contain any
number o¢f digits befcre or after the decimal foint and the
expornent may be cf any value. However, the value of the
constant, when converted to 1its i1nternal representation,
must lie within the specified limits and will be retained to
only about seven digits 1in precision., Constants are used in
arithmetic, line number, and sukscript expressions, and the
same conversion algorithm is applied in all cases.

An expression is represented 1in the usual manner as a
1ist of variables, constants, operators, and punctuation’

marks. Ine permissible Dbinary operators include Nen
(addition), "-" (subtractiocn), "*" (multiplacation), "/
(division), and "#" (exponentiation). The unary "+" (no-

operatioa), and "-" (neygation) operators are ditfferentiated
from their binary counterparts in context. <Certain special
and transceudental functions of one variaple are also
included. These are sumharized as follows:

3. Language sSpecifications

8 RAMP Architecture in a Utility Calculator Systenm

Name Function Notation
ABS absclute value | x|

ATN arctangent tan—1 (x)
€05 cosine Ccos (x)
EXP exponential (base e) ex

ITR extract integral part entier (x)
LOG logarithm (base e) ln(x)
NEG negation -|x|

SIG extract sign fpart sign(x)
SIN sine - sin(x)
SQT square root Jx

Operator-precedence techniyues (see references) are used in
tne parsing of the expression; and, in fact, the parser
algorithm itself is a scaled-down version of that used 1in
MAD/1 (see 1tveferences) and the EDP-8 assembler resident in
MTS. 1n this version, however, <c¢nly a single precedence
function 1s used, rather than two as in the other systenms,
50 the parser really has more of the characteristics of the
MAD compiler fcr the 7090. The precedence of the various
operators 1is as follows:

unary + 6
tfuncticns: ABS, etc. 5
¢ 4
unary - 3
* 2
binary + - 1
punctuation: (,) etc. 0

Error recovery is facilitated by ccmparing the <class codes
assigned each identifier 1in context, a procedure used
extensively by the MAD/1 compiler. It 1s easily shown that
these error checks are exhaustive.

3. Languayge Speciftications

RAMP Architecture in a Utility Calculator Systen 9

The validity of all arithmetic ofperations is checked at
each step for overtlows and underflows and, in addition, tue
tollowing special tests are performed:

1. In division a divisor of zero is an €rrore.

2. In the LUG function an aryument less than or equal
to zZeic 15 an errore.

3. In the EXP function an argument greater than about
100 1s an error.

4. In the SQT tfunction an argument less than zero is
an errcr.

5« The exponentiation operaticn " " invelves calls on
both the LOG and EXP functions using the identity
A B = bLXP(B*L0OG(A)), so that operand errors may be
tound in these functions.

6. In several functions a ccuversion ftrom flcating-
point to 1integer representation is required. In
such ccnversions an integer representaticn greater
than 223 is an ercor.

The syntax of each expression 1is checked for errcrs at
several points, These checks insure that the expression is
well-forwmed, that the various symbcls are defined, and that
any array structures referenced 1in fact exist. In addition,
certain types of expressions are checked for validity within
certain statements such as whether tae expression is valid
when used in real-time, as agalnst stored-program, mode.

It either an arithmetic or syntax error is round 1in a
statement, 1interpretation of that statemeat 1s 1mmediately
terminated and a dlaguostic messaye 1s printed on the
operating console. This message takes one of the following
torms:

XxXX FLOATING-POINT TRAF

XXXX INVALILC SYNTAX

XXXX INVALID STATENENT

XXXXx INSUFFICLiENL STCOKAGEL
where xXXx is a rour-octal-digit nuwber 1dentitying the
location 1in the system at which the error was tound. It
interpretation was from a stored progyram, then the 1line

numper 1n wnicn the error was found is printed. If an error
is found, 1interpretation 1mmediately stops and, 1if 1in

3. Langyuaye Specifications

10 RAMP Architecture in a Utility Calculator Systen

stored-program mode, the task 1s terminated. A list of
errors and their current error codes <can be found 1in
Appendix A.

Expressions may be of three types, depending upon
context; arithmetic, lipe number, and subscript. An
arithmetic expression, representing a value of type real in
the usual sense, is used wherever a reference to a program
variable 1s intended and may take on positive and negative
values of magnitudes from about 10-%17 ¢to 10617 ¢to a
precision of about seven decimal digits. A line number
expression, representing a value used as a line number in
the stored progranm, is used as an cperand of the IF, GO, and
other statements, and may take c¢n positive integral values
from zero to 4095. A subscript expression, representing a
value of a subscript in an array name, is used in the
construction of array names and may take on positive
integral values from zero to 409Y5. Unless used as the first
operand (left side of the assiynment symbol "=") of a SET,
DO, or LIST statement, all symbols and variable names 1n any
expression of any type must be fpredetined; that is, mnust
have occurred on the left side of a previous SET, DO, or
LIST stateument.

3.2 Statements

A proyram is a seyuence of gstatements identified by
line_number. Each statement type is identified by name (see
below) and consists of a sequence of arithmetic and line
number expressions. Each line number 1s a positive integer
of value 1less than 4096. Additions and deleticns of
statements in a program are done on a line-bpy-line Lkasis at
any time, whether tasks are running or anot, and can be
initiated either directly from the operating console or by
the program itself. Statements are provided for these
purposes as well as those to list portions of the progran
and to interpret such portions as commands.

A task 1s expiicitly initiated by the interpretation of
the appropriate statement and 1is terminated under one of
several conditions. The proyram itself is unigue to each
user in the system and is not afifected by the initiation and
termination ot the various tasks. At all times ain which the
user's operatinyg console is active a creal-time task is
operable in the system. This task operates witn the console
keyboard as its 1input. No line number 1s associated with
this operation, so that the GO and IF statements are invalid
wien interpreted by the real-time task. Dependent tasks
created by the real-time task are called stored-progran
tasks and these operate with the program itself as input.
By convention, tasks initiated by the real-time task are
presumed to operate simultaneously, so that real-time

3. Language Specitications

RAMP Architecture in a Utility Calculator Systen 1

interaction is fpossible among them. On the other hand, a
task 1nitiated by a stored program task is presumed to
continue until completion before the invoking task 1is
resumed. In this sense the stored-program invocation is
really a simple recursive subroutine call.

Each task invocation specifies a 1line number cf the
program at which interpretation 1s to begin, following which
the program 1s executed by the task line-by-line as
specified. Associated with each task is a variable nane
which 1s assigned a value equal tc the current 1line number
of the active task. The value of this task_variable can be
caanged either by the task itself by means of the branca
statements (GO and IF) or by other tasks. Thus the task
variable assigned each task represents a kind ot instruction
iocation <counter 1im a peculiar "“central-processing-unit,"
and can be accessed and modified by cther tasks running in
the multiprogramming mode. By convention, if the value of
the task vdarliable exceeds that of the highest 1line number
currently assigned 1in the program, execution of the task
ceases., 1In all cther cases, a branch to a program at any
line number will cause the task to begin execution at the
line number with a value at least that of tne branch number.
At any place 1in a program in which a 1line number is
expected, the vaiue can be ¢encrated by a variable,
constant, or expression, £o that brancas points can be
computed.

Each line of the program, each task and e€ach c¢f 1ts
allocated variables reqguires storage space in the rachine
and this space 1s hared amony all wusers ot the systen
(currently two). In order to ccnserve storage space on one
hand ana yet ailow a reascnably unrestricted use of the
available space on the otaer, the following algorithm 1is
used:

1. Variables are assoclated with the task that created
them and are released when tnat task terminates or
by an explicit statement.

2. The program itself is ccmmen to all tasks and can
be erased at any time by any task.

3. A daughter task may access the variables c¢f its
motner task, tnose of the mother ot 1its mother,
and so forth.

4, Except ror (3) above, a task has access to no
variables which i1t has nct created.

These conventions imply some rather 1nteresting recovery
procedures 1in fpatholcyical <cases, a5 @might be expected.

3. Language Specilfications

12 RAMP Architecture 1in a Utility Calculator System

There are some logically consistent situations which can
occur when a task bombs (i.e., yoes into a loop or traps) in
wnich the only recovery possible is to erase the progranm.
For 1instance, consider the case where task A calls task B
vhich 1n turn calls task C using a task variable 1 for C
which 1s not known to A. If task C boabs, then it cannot be
stopped or restarted from A, since its task variable is not
Known to A. In general, then, 1t seems to be good
programming form to use task variables which are known by
the real-time task and therefore to all the daughter tasks
invoked by the user.

The following statements are recogynized in the current
implementation:

TYPE expl,exp2,«..,€Xpn

Type in floating~-point format the values ot
exXpl,eXp2,eee,€Xphae A character string enclosed
in guotation marks (") may ke used in place of a
comma, 1in which case the string is printed at the
indicated place.

SET var=expl,expl,...,expn

Evaluate the subscript expressiocns (if any) ot var.
Then evaluate each ot the expressions
expl,expl2,.-.-,eXxpn in turn and sSubstitute their
values for tne components of var in turn, starting
with the indicated subscript of var. See text for
variants of the SET statement.

GO exp

Brancn to the statement number given as the value of
eXpe.

IF exp,expl,exp2,exp3

Evaluate exp and perform a three-way conditional branch
as follows: If the value ct exp 1s less than zero,
ejual to zerc, or gyreater than zero, then branch
to the statements whose line numbers are the
vaiues of expl, expl cr exp3 respectively.

DO var=exp

Evaluate the subscript expressions for var and assign
this component of var as a task variable. Then
assign the 1mitial value of the task variable as
the value of exp and begin interpretation at the
corresgonding line number.

3. Lanyuaye Specirications

RAMP Architecture 1n a Utility Calculator Systen 13

END
Stop interpretation and return to the invoking task.
FORMAT expl,expl

Set format constants wused 1in tloating-point output
conversion. . The value of expl beccmes the tab-
stop value; each floating point output conversion
is tabbed so that 1ts first character is at a line
position which 1s a multiple of this value. The
value oI expl becomes the number of significant
(ncnzero) diyits retained during the output
conversion process. (The full precision 1is
retained during all internal operations however.)

ERASE
Erase all lines of the stored progranm.
LI5T var=exp
Evaluate the subscript expressicns for var and assign
this component as a task variable. Then assign
the 1nitial value of the task variable as the
value or exp and began listing ot the stored
proyram at the corresgonding line number.

DELETE varl,varl,...,varcn

Deallocate the variable structures indicated by
varl,vard,se«,varha.

3. Lanyuage Specitications

14 RAMP Architecture in a Utility Calculator Systenm

4. OPERATING CCNVENTIOUNS

The console operating protocol and line-editing
conventions are identical with those of the Data
Concentrator and other related RAMP systens. In summary,
the followinyg characters are interpreted as line-editing
functions:

Character Function

RETURN end of line

RUBOUT line delete

Control-d (CAN) character delete (backspace)
Control-E (ENQ) attention

Control-sShift-pP (NUL) leader-trailer (ignored)

All 63 USASCII printing graphics available on the Teletype
Models 33/35/37/38 except "a@" are available to the system;
all other characters are ignored. In the <case of Model
37/38 the lower-case alphabetic characters are mapped into
their upper-case equivalents. (This machine requires, of
course, a ditferent interface clock.)

All characters typed at the «console keyboard are
return-echoed tc the console printer, but 1t is possible to
enter lines to the system while the <console printer is
typing some other information. In such cases the return-
echo line 1s delayed until the end of the current output
line, and then 1is output to the printer. 1I1If the keyboard or
echo buftfers overflow, the return-echo process is susgended.
If the keyboard buffer overtlcws (always due to an input
line which 1s tco long), then either a character-delete or a
line-delete operation will ciear the condition. 1If the echo
buffer overflows, then simply waiting tor current gprinter
activity to cease will clear the condition.

Statements may be entered to the system in two modes:
The real-time wmecde, 1n which statements are interpreted as
entered trom the keyboard, and the stored-program mode, 1in
which statements are interpreted in seguence from the
1nternal stored program. Since the real-time task is always
active, statements can be entered to the system at any tinme,
whether output 1is being produced cn the console printer or
not and regardless o¢t the contiguration of the operating
tasks and their attached variables.

Statements are entered to the system trom the stored
program by creating a task using the DO statement. A task

4. Operatiny Conventions

RAMP Architecture in a Utility Calculator Systen 15

created by either the DO or LIST statements can be stopped
at any time by changing the task variable (using the SET
statement) to a number higher than the highest 1line nuaber
currently assigned in tne stored program. Statements in the
two operating modes are structured alike except that the GO
and IF statements are semantically invalid if entered in the
real-time mode.

The stored program itself is created and moditied using
conventional procedures. A line to ke entered to the stored
program is prefixed by a line number in the range from zero
to 4095 and a single blank and followed by the end-of-line
(RETURN) code. A line ot the stored program can be erased
by entering the line numper tollowed immediately by the end-
of-line (RETUKN) code. Lines may be entered to the stored
program which, when themselves interpreted, will cause other
lines to be moditied by using the following rule: during
interpretation, ftirst the 1line number and oue space 1is
stripped from the interpreted line. Next the 1line-update
operation 1s done, preserving arny residual leading blanks.
Finally the resultant line 1s treated as if it came from the
real-time task. The entire stored program can pe erased at
any time and by any task using the LEEASE statement.

A variable structure is created by the DC, LiST, SET,
LOCAL and GLUBAL statements. When created by the LOCAL
statement the variable is attached to the creating task,
wihether 1in real-time or stored-proyram mode. Thus the
variable 1s known to all daugnters c¢t tne creating task but
none of 1ts ancestrai mother tasks. When created by the
GLOBAL statement the variavle is attached to the real-time
task and 1s known to all tasks 1n the system. When created
by the S&T, DO or LIST statements, a search 1s made 1in the
dictionary defining variabies which belong to the creating
task, then the mcther ot that task, then its wmother, and so
forth to the real-time task. 1If the variable name already
exists in one of tnese dicticnaries, then the reference 1in
the SET, DC, or LIST statement 1s assumed to be to that
instance, otherwise the variable is attached to the creating
task.

The structure of the variabie dictionaries 1in this
fashion provides a fparameterizaticn facility 1in rather an
interestiny tashion and allows recursively structured stored
programs with 1nterccmmunicating tasks as illustrated 1in
Appendix B.

4, Operatingy Conventions

16

3.

RAMP Architecture in a Utility Caiculator Systen

5. REFERENCES

Mills, De.l., HAMP: A Multiprogyramming System_for_ _Real-
Time_ Device__Control, <Concomp Project Memorandum 5,
University ot Michigan, May 1967.

Mills, D.L., I/O_Extensions_to _EKAMP, Concomp Eroject

Memcrandum 11, University ot Michigan, October 1967.

Milis, D.l., The_Syntactic_Structure of MAD/I, Concomp
Project Technical Report 7, University of Michigan, May
1368 Also 1in Procedings of International Seminar on
Advanced Programming Systens, Hebrew University,
Jerusalem, August 1968.

Mills, D.l., The__Data_ _cConcentrator, Concoump Project
Technical Report 8, University of Michigan, May 1968.
Also 1in Procedings ot University ot Wisconsin

Enyineering Institute, December 1968, pp-. 1-113.

Mills, D.Ll., Multiproyramming _in__ a___Small-Systems
Enviroament, Concomg Project Technical Report 19,
University of Michigan, May 19bv%. Also in Procedings
ot University ot Michigan Engineering Sunner
Conterence, June 1569.

Powers, V.M., Mills, D.L., and Laurance, N., An
Assembly _langjuage System__tftor_ DEC Mini;ggggg§g£§‘b

Concomp Project Memorandum 20, University of Michigan,
May 1969.

)u FOCAL [Frogramming Manual, Form DEC-08-AJAC-D,
Digital Equipment Corp., Maynaird, Mass., 1968.

Ju Pittsburgh Interpretive Language_ _(PIL), in _MIS =

5"

Michigan lerminal System, University of Michigan
Computing Center, 1968.

Mills, D.l., and Powers, V.., PDP-8 Frogram
Relocation: _Concepts _and _Facilities, Conccmp Eroject

Memorandum 17, University ct Michigan February, 1968.

References

RAMP Architecture in a Utility Calculator System 17

APPENDIX A. ERKCR DIAGNCSTIC DICTIONARY

PDP-8 xAMP CCNTRCL SYSTEM (VERSICN 58) 05-17-69

ASSEMBLY LiSTLING (ALL NUMBERS ARE CCTAL)

4017
5311
5003
6127
6204
0337
5234
5243
4473
4530
4517
4561
437
4727
3747
44506
3501
3614
4140
5333
3672
4133
3p63
4073
4446
4567

XXX001
XXx018
KXX002
XXX003
XXX004
XXX005
XXX0006
XXXG07
X£Xx008
XXX009
£XXx010
XXX01
XXX012
AXX013
XXXQ017
LXX014
£XX021
LXX024
XXX02<
XXXxU20
X£X019
XXX015
XXX010
XLXU23
XXX020
X££026

Appendix A

ERROO1
ERRO18
ERR002
ERROO3
ERROOU4
ERROCGS
ERKOOG
ERKOO7
EREOUS8
ERROCY
cRRO10
ERRGT11
EKRO 12
EREO13
ERRO 17
EERO14
ERk0z1
ERRCZ4
EREK0Z22
EEKOZ0
ERKO1Y
ERKRO15
EREKO 16
EkROZ3
ERRU <5
EkKOZ20

PRINT ON,SHCKT, NOREY

1INVALID VARIABLE ASSIGNMENT STATEMENT
INTEGER OVERFLCW

DIVIDE CHECK

"S¢TI" ARGUNMENT LESS THAN ZERO

"WLOGY ARGUMENT LESS THAN OK EQUAL TO ZERO
WEXPY ARGUMENT TCC LARGE

FPLOATING-POINT UNDERFLOW

FLOATING-EOINT CVEHKFLOW

INVALID OPERAND CONTEXT

UNDEFINED SYMBCL

iNVALID BINARY CPERATOR CONTEXT

INVALID UNARY CEEKATOR OR " (™ CONTEXT
ILL-7O0BMED EXPRESSION

STACK OVELFLOW

INVALID ERANCH STATEMENT IN REAL-TIME TAS
UNDEFINED SUBSCKIET

MESS ERRUR. IGNORL THIS COMMENT
UNDEFINED STATEMENT TYPE

VARIABLL CICTICNARY OVERFLOW

INVALID LINE~-NUMNBE&K OR SUBSCRIPT EXPHESSI
LINE DIiCTIONAKY OVEKFLOW

UNLEFINED SUBSCRIPT

INVALID LINg-NUMBER UELIMITER

MISSING SUBSCRIFT EAPRESSION DEFINITION
NISSING SUBSCRIPT EXPRESSION

MISSING OFBRANL CR EXPRESSICN

18 RAMP Architecture in a Utility Calculator Systen

APPENDIX B. A RECURSIVE PEOGRAM TO CALCULATE FACTCRIALS

Following is a listing and a sample run of a program to
calculate the factorial of a [fpositive 1integer using the
algorithm:

F(N)=1; if N=1
F (N)=N¥F (N=1); if N>1

Progyram:

100 IF N,,,130

110 GLOBAL F=1

1240 END

130 LOCAL X=N

140 LOCAL N=X-1

150 DO X=10C

160 GLUBAL F=F* (N+1)
101 TYPL N+1,F

170 END

Sample run:

FORMAT 4,6
SET N=10
DO X=0

1 1

2 2

3 b

4 24

5 120

b 720

7 5040

8 40320
9 362880
10 36288C0

Appendix B

RAMP Architecture in a Utility Calculator Systenm 19

APPENDIX C. A NUMBER-CKUNCHER TC CALCULATE TRANSMISSION
LINE CHARACTERISTICS

The following program computes a summary ot the
electrical characteristics ot loaded and nonloaded telephone
cables of the type typically wused in exchange loops.
Calculations using tnis program have been made yielding data
usetul tor the design of leased-line connected remote job
entry eguipment, The theory on which these methods are
based can be tound in the references tollowing this
appendix.

* CCMPUTE LINE PAKAMEIEERS
100 SET S=D*SQT (F)

105 IF .2716%5-1,,,114

110 SET E=1

112 GO 140

114 IF $-11.083,,,130

115 SET LE=1+.08% (.2718%5-1)42

120 GO 140

130 SET E=.096%S+.26

140 SET R=FE(*E

150 SET L=LO/E

160 SET G=GO¥(F/1000)4 1.3

170 SET €=C0

180 IF 9Q,190,,190

182 TYPZ F,D%SQT(F) ,R,L,G*1E6,C¥1L6, SQT (L*C) *1E3
134 END

* COMPUTE CHARACTEKISTIC IMPEDANCE AND PBKOPAGATION
COMSTANT

190 SET W=2%3.141593%F

220 SEYT TI1=H*R+WELE*W*L

230 SEL T2=G*G+W¥*CxwkC

240 SET T3=ATN (W*L/R)

250 SET TU=ATN (W*C/G)

260 SET 4=SCT(SQTI(T1/I2))

270 SET 41=(TI3-T4) /2

280 SET H=S(CT1(SQT(11%*T2))

290 SEI H1= (13+Tu4)/2

292 SET A=t*COS (H1)

294 SEL B=H*SIN (H1)

296 IF Qu=3,,496,496

300 IF ¢u—-1,310,,310

302 TYPE F,2%C0S(Z1) ,42%SIN(41) ,8.666%A,5,B/W*1L3
304 END

¥ CCMPUTE THANSMISSiCN CHARACTEKISTICS
310 SET T1=-N%*B

330 SET TZ=EXP (-N*A4)

340 SET I3=12%COS(T1+41)

Appendix C

20 RAMP Architecture 1n a Utility Calculator Systen

350 SET TW4=T2*SIN(T1+21)

360 SET T5=T2%COS(T1)

370 SET T6=T2*SIN(T1)

380 SET U1=KL* (1+4T5) +Z* (COS (21)~-T3)
390 SET U2=KL*T6+Z% (SIN(Z1)-T4)

400 SET U3=RL* (1-T5)+%% (COS (Z1) +T3)
410 SET U4=—RL*T6+Z* (SIN(Z1)+T4)

460 SET E=2%RL*Z%T2/SQT ((U1*U1+U2%U2) *(U3*U3+0U4%04))
470 SET E1=21+4T1-ATN(U2,U1) -ATN (U4,/U3)
480 IF Qu-U,,492

490 IF ¢Q-2,496,,496

492 TYPE F,8.686%L0OG (E) ,E1/W*1E3

494 END

* CCMPUTE ECUIVALENT-TEE PARAMETERS
496 SET A=K*A

498 SET B=K*B

500 SET T1=EXP (-A)

510 SET T2=1-T1*C0S (B)

520 SET T3=1+#T1%CCS (B)

530 SET T4=T1*SIN (B)

S40 SET M1=2%SQT ((T2*T2+T4*T4) / (TI*TI+TU%T4))
550 SET L1=Z1+ATN(T4/T2)+ATN(T4,/T3)
560 SET T2=EXP (-2%A)

562 SET T3=1-T2*COS (2%B)

564 SET T4=T2%*SIN(2%B)

570 SET M2=2%Z%T1/SQT (T3*T3+TU*T4)
580 SET L2=21-B-ATN (T4/T3)

600 SET T1=RX/2+M1%¥COS (L1)

610 SET T2=WXLX/2+M1%SIN(L1)

620 SET M1=SQI (T1*T1+T2%*T2)

630 SEIr L1=ATIN(T2/71)

* CCMPUTE TEE IMPEDANCE AND ERCPAGATLON CONSTANT
650 SET T1=2%M2/M1

660 SET T2=L2-L1

670 SET T3=1+T1%CCS (T2)

680 SET T4=T1*SIN(T2)

690 SET TS5=SCT (SQT (T3*TI+T4*T4))

700 SET T6=AIN(T4/T3)/2

710 SET T6=T6+SIG(T3)* (1-2%SIG(T4))*3.1415923/2

740 SET U1=T5%COS (T6) +1

750 SET UZ=T5%COS (16) -1

770 SET U3=TS*SIN(T6)

772 SET Z=M1%*T5

774 SET Z1=L1+T6

780 SET A=LOG (SQT ((U1*U1+U3%U3) / (U2%U2+U3%03)))

790 SET B=AIN(U3,U1)-ATN(U3,U2)

800 SET B=B+ (SIG(U1)=-SIG(U2))*(1-2%SIG{U3))*3.1415923
310 IF $0-3,302,302,310

* MAIN PROGBHAN

Appendix C

RAMP Architecture in a Utility Calculator Systen

1000
1010
1012
1014
1020
1030
1032
1040
1042
1044
1040
1047
1048
1050
1052
1054
10506
1058
1060
1070
1080
1090
1100
1110
1120
1140
1150

Appendix C

SET
SET
SET
SET
SET
SET
SET
SET
SET
ST

K=1

D=.03589
R0=.1095/ (D*D)
L0=.001
GO0=1E-6
C0=.061E-0
N=1

RL=600

RX=7.6
LX=.088

FORMAT 10,4

TYPE K,bL,L0,G0,C0

TYPE N,RL,RX,LX
SET P(1)=50,100,200,500,1E3,2E3,5E3,7E3, 1E4, 1. 5E4

TYPE "TRANSMISSION-LINE CHARACTERISTICS™

SET

Wwy=0

IF QQ-5,,1150
TYPE MSET "¢C

SET

1=1

if I1-10,,,1120

SET

F=P (I)

DO X=100

SET

I=14+1

GO 107¢C

SET

Ce=gut

GO 1U56

END

21

22

1e

2.

RAMP Architecture in a Utility Calculator Systen

REFERENCES FOR AEFFENLDIX C

Systen Subggg;be;__;ooE_ogzgézz‘—K:fjﬁtE. Trans. On
Communications and Electronics, (September 1963), pe.
4oy.

Johnson, W.C., "Transmission Lines and Networks,"
McGraw-Hiil, New York, 1950, 361 pp.

"Reference Lata for Radio Engineers," Westman, H.P.
{Ed.), International Telephone and Telegraph Corp.,
1959, 1121 pp.

Shaw, T., The Evolution of I
System _Telephone _Facilities,
149.

Appendix C

-23=

CONCOMP PROJECT

~INCLASSIFIED
Security Classification
DOCUMENT CONTROL PATA - R&D
| ‘Secuntv classifivation of title, body ot costract and inaexi il Lonoraiion mus chcn the overall report (s classified)
1. Cor, aratea thor 2u. 2 i
TR ON Y MRS T BF G TGAN } NGLASYTFTRD ™ AT

i 20, GROUP

3. REPORT TITLE

RAMP Architecture in a Utility Calculator dystem

&, DESCRIPTIVE NOTES /Type of report and inclusive dates)
Memorandum

5. AUTHORIS! (First name, middie initial, last name)

David L, Mills

C.

d,

6. REFORT DATE f7u TOTAL, NO, OF PAGES 5. '\i" OF REFS
May 1969 2L

8a. CONTRACT OR GEANT NC. Sa, ORIGINATOR'S REPORT NUMBER(S)

b, PROJECT NO.

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
¢ this report)

¥

DA-49-083 0SA 3050 | Memorandum 2l
i
!

i

10.

DISTRIBUTION STATEMENT

Qualified requesters may obtain copies of this report from DDC.

11

L SUPBLEMENTARY NOTES 2. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

. ABSTRACT

This report describes an experimental multi-user utility
calculator system similar to PIL, BASIC, and FOCAL, but implemented
as a subsystem in RAMP, a multiprogramming system described else-
where, The features of this system include text editing, statement
interpretation, and expression evaluation as in other systems cited,
In addition, this system provides the capability of multitasking at
the source language level, Thus each user can specify a program
structure consisting of a number of asynchronous tasks which interact
with each other in interesting ways.

DD ."%.1473

UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification =2l-
14, LINK A LINK B LINK C
KEY WORDS ROLE | wr ROLE | wr Rote | yr
multiprogramming
operator-precedence language
text editor
floating-point interpreter
PDP=-8
IINCLASSIFIED

Security Classification

