CISC 672 Advanced Compiler Construction Spring 2005

Programming Assignment I1I

First Due Date: (Grammar) March 12, 2005 (submission dated midnight).
Second Due Date: (Complete) March 19, 2005 (submission dated midnight).

Purpose: This project is intended to give you experience in using a parser generator, namely bison or
JavaCup, and to bring together the various issues of syntax specification, parsing, and abstract syntax
tree construction discussed in class.

1 Introduction

In this assignment you will write a parser for Cool. The assignment makes use of two tools: the parser
generator (the C++ tool is called bison; the Java tool is called CUP) and a package for manipulating
trees. The output of your parser will be an abstract syntax tree (AST). You will construct this AST
using semantic actions of the parser generator.

You certainly will need to refer to the syntactic structure of Cool, found in Figure 1 of the CoolAid
manual, as well as other portions of the reference manual. There is a section on bison in the course
reader. There is also a section (Dragon Book 4.9) in the textbook on yacc, a close predecessor of bison.
Documentation for CUP may be found online. The C++ version of the tree package is described in
the Tour of Cool Support Code section in the back of the Cool manual, while the documentation for
the Java version is also available online. You will need the tree package information for this and future
assignments.

There is a lot of information in this handout, and you need to know most of it to write a working
parser. Please read the handout thoroughly.

You may work in a group for this assignment (where a group consists of two people).

2 Files and Directories

To get started, create a directory where you want to do the assignment and execute one of the following
commands in that directory. For the C++ version of the assignment, you should type

gmake -f “pollock/public/coo0l02/assignments/PA3/Makefile
For Java, type:
gmake -f “pollock/public/cool02/assignments/PA3J/Makefile

(notice the “J” in the path name). This command will copy a number of files to your directory. Some of
the files will be copied read-only (using symbolic links). You should not edit these files. In fact, if you
make and modify private copies of these files, you may find it impossible to complete the assignment. See
the instructions in the README file. The files that you will need to modify are:

e cool.y (in the C4++ version) / cool.cup (in the Java version)
This file contains a start towards a parser description for Cool. You will need to add more rules. The
declaration section is mostly complete; all you need to do is add type declarations for new nonterminals.
(We have given you names and type declarations for the terminals.) The rule section is very incomplete.

page 1 of 5



CISC 672 Advanced Compiler Construction Spring 2005

e good.cl and bad.cl
These files test a few features of the grammar. You should add tests to ensure that good.cl exercises
every legal construction of the grammar and that bad.cl exercises as many types of parsing errors as
possible in a single file. Explain your tests in these files and put any overall comments in the README
file. You are welcome to create a set of test cases good0.cl, goodl.cl,... and bad0.cl, badl.cl... if you
want instead of single good and bad cases.

e README
As usual, this file will contain the write-up for your assignment. Explain your design decisions, your
test cases, and why you believe your program is correct and robust. It is part of the assignment to
explain things in text, as well as to comment your code.

Important: All software supplied with this assignment is supported on both Solaris SPARC and
Solaris x86. Remember to run gmake clean if you switch architectures.

3 Testing the Parser

You will need a working scanner to test the parser. You may use either your own scanner or the coolc
scanner. By default, the coolc scanner is used, to change that, replace the lexer executable (which is a
symbolic link in your project directory) with your own scanner. Don’t automatically assume that the
scanner (whichever one you use!) is bug free — latent bugs in the scanner may cause mysterious problems
in the parser.

You will run your parser using myparser, a shell script that “glues” together the parser with the
scanner. Note that myparser takes a -p flag for debugging the parser; using this flag causes lots of
information about what the parser is doing to be printed on stdout. Both bison and CUP produce a
human-readable dump of the LALR(1) parsing tables in the cool.output file. Examining this dump is
frequently useful for debugging the parser definition.

Once you are confident that your parser is working, try running mycoolc to invoke your parser
together with other compiler phases. You should test this compiler on both good and bad inputs to see
if everything is working. Remember, bugs in your parser may manifest themselves anywhere.

Your parser will be graded using our lexical analyzer. Thus, even if you do most of the work using
your own scanner you should test your parser with the coolc scanner before turning in the assignment.

4 Parser Output

Your semantic actions should build an AST. The root (and only the root) of the AST should be of type
program. For programs that parse successfully, the output of parser is a listing of the AST.

For programs that have errors, the output is the error messages of the parser. We have supplied you
with an error reporting routine that prints error messages in a standard format; please do not modify it.
You should not invoke this routing directly in the semantic actions; bison/CUP automatically invokes it
when a problem is detected.

Your parser need only work for programs contained in a single file — don’t worry about compiling
multiple files.

page 2 of 5



CISC 672 Advanced Compiler Construction Spring 2005

5 Error Handling

You should use the error pseudo-nonterminal to add error handling capabilities in the parser. The
purpose of error is to permit the parser to continue after some anticipated error. It is not a panacea
and the parser may become completely confused. See the bison/CUP documentation for how best to use
error. In your README, describe which errors you attempt to catch. Your test file bad.cl should have
some instances that illustrate the errors from which your parser can recover. To receive full credit, your
parser should recover in at least the following situations:

e If there is an error in a class definition but the class is terminated properly and the next class is
syntactically correct, the parser should be able to restart at the next class definition.

e Similarly, the parser should recover from errors in features (going on to the next feature), a let binding
(going on to the next variable), and an expression inside a {...} block.

Do not be overly concerned about the the line numbers that appear in the error messages your parser
generates. If your parser is working correctly, the line number will generally be the line where the error
occurred. For erroneous constructs broken across multiple lines, the line number will probably be the
last line of the construct.

NOTE: The more error nonterminals you add to the grammar, the more likely you will create
grammar conflicts that did not occur before, so I suggest that you start with only two error nonterminals
in your grammar, and add more if you want to give better error handling. When you start creating
conflicts, stop adding error nonterminals.

6 The Tree Package

There is an extensive discussion of the C++ version of the tree package for Cool abstract syntax trees in
the Tour section of the Cool manual. The documentation for the Java version is available on the course
web page. You will need most of that information to write a working parser.

7 Remarks

You may use precedence declarations, but only for expressions. Do not use precedence declarations blindly
(i.e. do not respond to a shift-reduce conflict in your grammar by adding precedence rules until it goes
away). If you find yourself making up rules for many things other than operators in expressions and for
let, you are probably doing something wrong.

The Cool let construct introduces an ambiguity into the language (try to construct an example if
you are not convinced). The manual resolves the ambiguity by saying that a let expression extends as
far to the right as possible. The ambiguity will show up in your parser as a shift-reduce conflict involving
the productions for let.

This problem has a simple, but slightly obscure, solution. We will not tell you exactly how to solve
it, but we will give you a strong hint. In coolc, we implemented the resolution of the let shift-reduce
conflict by using a bison/CUP feature that allows precedence to be associated with productions (not just
operators). See the bison/CUP documentation for information on how to use this feature.

Since the mycoolc compiler uses pipes to communicate from one stage to the next, any extraneous
characters produced by the parser can cause errors; in particular, the semantic analyzer may not be able
to parse the AST your parser produces.

page 3 of 5



CISC 672 Advanced Compiler Construction Spring 2005

8 Notes for the C++ version of the assignment
If you are working on the Java version, skip to the following section.

e You must declare bison “types” for your non-terminals and terminals that have attributes. For
example, in the skeleton cool.y is the declaration:

htype <program> program

This declaration says that the non-terminal program has type <program>. The use of the word “type”
is misleading here; what it really means is that the attribute for the non-terminal program is stored in
the program member of the union declaration in cool.y, which has type Program. By specifying the

type
%type <member_name> X Y Z ...

you instruct bison that the attributes of non-terminals (or terminals) X, Y, and Z have a type appro-
priate for the member member name of the union.

All the union members and their types have similar names by design. It is a coincidence in the example
above that the non-terminal program has the same name as a union member.

It is critical that you declare the correct types for the attributes of grammar symbols; failure to do
so virtually guarantees that your parser won’t work. You do not need to declare types for symbols of
your grammar that do not have attributes.

The g++ type checker complains if you use the tree constructors with the wrong type parameters. If
you ignore the warnings, your program may crash when the constructor notices that it is being used
incorrectly. Moreover, bison may complain if you make type errors. Heed any warnings. Don’t be
surprised if your program crashes when bison or g++ give warning messages.

9 Notes for the Java version of the assignment
If you are working on the C+4- version, skip this section.

e You must declare CUP “types” for your non-terminals and terminals that have attributes. For example,
in the skeleton cool.cup is the declaration:

nonterminal Program program;

This declaration says that the non-terminal program has type Program.

It is critical that you declare the correct types for the attributes of grammar symbols; failure to do
so virtually guarantees that your parser won’t work. You do not need to declare types for symbols of
your grammar that do not have attributes.

The javac type checker complains if you use the tree constructors with the wrong type parameters. If
you fix the errors with frivolous casts, your program may throw an exception when the constructor
notices that it is being used incorrectly. Moreover, CUP may complain if you make type errors.

page 4 of 5



CISC 672 Advanced Compiler Construction Spring 2005

What to Turn in:

For deadline 1: submit via course submission website

For deadline 2: submit via course submission website

Deadline 1: For the first deadline, you should have a complete bison specification for the Cool
language, but need not have trees being constructed. Your parser should accept correct Cool programs,
and print error messages for syntactically erroneous Cool programs. Your good.cl and bad.cl should be
included in this deadline submission. The README for this submission need only include some text on
your overall approach to the grammar construction and dealing with conflicts. You do not need to do
any error recovery for this first deadline.

Note that until you create the actions to create the ast, the test of your parser through the makefile
command will not run properly as it is expecting an ast to be produced. As long as you can see that it
has parsed the whole program and reduced to the start symbol, your grammar is working ok for this run
of test.cl.

Deadline 2: For the second deadline, your parser should also perform AST construction in order to
satisfy the full specification of this assignment sheet. Error recovery should be included in the submission
for this deadline. You are welcome to change your good.cl and bad.cl for this submission. The README
documentation should be more extensive and complete for this submission.

Criteria for Grading:

(28) Grammar:
- accepts syntactically correct programs without error messages/bombing Which features of the languages
are NOT accepted properly by parser?
- does not accept syntactically erroneous programs Which features are improperly accepted when they
should be flagged as errors?
- precedence and associativity of operators consistent with language definition

(5 pts) Error Handling:
- detection and descriptive error messages printed out: error explanation and maybe location (no error
recovery for first deadline is needed, just detection of single errors) For programs that have errors, the
output is the error messages of the parser.

(5 pts) Test cases:
- good.cl extended with pretty thorough testing of correct program structure - bad.cl extended to test
parsing errors If want to add other test cases, that is fine also.

(2 pts) External documentation in README. Explain your design decisions, your test cases, and
why you believe your program is correct and robust.

page 5 of 5



