
CISC 672 Advanced Compiler Construction Fall 2010

Programming Assignment I

Due: September 9

The purpose of this assignment is ensure that you have a solid knowledge and understanding of the
syntax and semantics of the Cool language. In addition, you will learn how to read and understand a
language specification in order to be able to implement the language as specified. Lastly, you should gain
some appreciation for the task of test case generation, in order to adequately test a software application,
in our case, to test a compiler.

This assignment will not be done with a partner; you should turn in your own individual work. This
is a fairly straightforward assignment and most students shouldn’t find it too time-consuming; however,
we are giving you about a week to work on it. Don’t wait until the day before to start!

This assignment basically asks you to write 2 Cool programs, and 1 incorrect, Cool-like program. Cool
is the language you will be implementing this semester. Cool shares many similarities with C/C++/Java
but keep in mind that not all features exactly match. Our hope is that using familiar syntax will make
things easier for you, but you’ll need to keep on your toes where it is different as well.

Tasks

1. Read the Cool language manual, Sections 1 – 11, which explains the programming language “COOL”.
The Cool manual is on the course web page. Reading these sections is necessary for the following
tasks, as well as for future assignments.

2. Program Number 1: Write a 100-200 line Cool program that is object-oriented, and tests a large
number of the features (syntactic as well as semantic) of the Cool language. Your first program should
not be a trivial program, but one that does something useful. You could write a program that plays
some game, works as a calculator, or implements a data structure or common algorithm, or performs
some other useful task. You could look though a C++ or Java book, choose an exercise, and implement
it in Cool.

Program Number 2: Write a 100-200 line Cool program that is object-oriented, and focuses on testing a
specific significant feature of Cool as thoroughly as possible. An example might be to test combinations
of control flow, or different kinds of parameter passing. The test program should include simple, basic
test segments as well as push the limit of what is allowed by Cool for that feature(s). This program
does not need to do anything useful, but serve as a rigorous test program for a Cool compiler.

Program Number 3: Write a 50 line program that is Cool-like, but contains several lexical or syntax
errors. The program should look at first glance like a legal Cool program, but in fact, contains errors
that the first two phases of a compiler should catch. This program does not need to do anything useful,
but serve as a test program for a Cool compiler.

3. Compile your programs using the complete Cool compiler provided to you, and described in the Cool
Manual. You should execute your translated Cool programs using the spim interpreter provided to
you and also explained in the Cool manual. Be sure that your first two Cool programs are thoroughly
tested and run to your specifications. Be sure that the current Cool compiler catches the errors in
your third program.

4. Write documentation that describes how to compile and run your Cool programs easily, lists the
features of Cool that are “covered” or included in each Cool program, and explains what each Cool

page 1 of 2



CISC 672 Advanced Compiler Construction Fall 2010

program is supposed to be performing. Be sure to include internal documentation in each program
as you would any program that you are writing for someone else to follow the logic. Describe the
intended input/ouput of each program. Be sure to describe any limitations of your Cool programs, in
terms of kinds of inputs they can take, so the TA does not try those inputs.

5. Write 2 test cases (preferably file input) for each Cool program. Each test case should be a legal input
and the expected output from running your program with that input.

Project Submission:
Name each of your programs by your last name-pa1-p1.cl, last name-pa1-p2.cl, and last name-pa1-

e1.cl. Submit these three programs using the svn repository.

Evaluation Criteria:
Your grade on this assignment will be based on:

Program 1: 25 points
___Performs a useful task
___Well-written in terms of structure
___Creativity of design
___Good program structure
___Passes various input tests
___Uses a lot of the features of Cool, especially OOP.
Program 2: 25 points
___Thoroughly tests the specified feature
___Fairly significant feature to test
___Passes various input tests
Program 3: 10 points
___Looks Cool-like overall
___Contains a few lexical/syntax errors - some not so obvious

20 pts Documentation
___Internal
___External

10 pts Test cases
___Effective at exercising much of the Cool program
___Provided input with expected output

10 pts Ease of compile/run/test for the TA
___Easy for the TA to compile and test with given inputs

page 2 of 2


