
CISC 672 Advanced Compiler Construction Fall 2010

Phase IV: Code Generation

Due Date: December 7, 2010.
Teamwork: Highly encouraged.

Purpose:
This project is intended to give you experience in writing a code generator as well as bring together the
various issues of code generation discussed in the text and in class.

Groupwork:
The same rules for group work as in Phase III apply.

Project Summary:
Your task is to implement a code generator for Cool. This assignment is the end of the line: when
completed, you will have a fully functional Cool compiler, and you will have achieved full Compiler
Wizardry status!

The code generator makes use of the AST constructed in Phase II and static analysis performed
in Phase III. Your code generator should produce MIPS assembly code that faithfully implements any
correct Cool program. There is no error recovery in code generation—all erroneous Cool programs have
been detected by the front-end phases of the compiler.

As with the static analysis assignment, this assignment has considerable room for design decisions.
Your program is correct if it generates correct code; how you achieve that goal is up to you. We will
suggest certain conventions that we believe will make your life easier, but you don’t have to take our
advice. As always, explain and justify your design decisions in the README file. This assignment is
comparable in size and difficulty to the previous programming assignment. Start early!

Important Project Files:

• codeGeneration/CgenSupport.java
This file contains general support code for the code generator. You will find a number of handy
functions here. Modify the file as you see fit, but don’t change anything that’s already there.

• codeGeneration/CgenClassTable.java and codeGeneration/CgenNode.java
These files provide an implementation of the inheritance graph for the code generator. You will need
to complete CgenClassTable in order to build your code generator.

• symbolHandling/StringSymbol.java, symbolHandling/IntSymbol.java, and symbolHan-
dling/BoolConst.java
These files provide support for Cool constants. You should have a look at these files, especially at the
methods codeDef and codeRef.

• treeNodes/*.java
These files contain the definitions for the AST nodes. You will need to add code generation routines
for Cool expressions in this file. The code generator is invoked by calling method cgen() of class
Program. Do not modify the existing declarations.

page 1 of 3



CISC 672 Advanced Compiler Construction Fall 2010

• generalHelpers/TreeConstants.java
As before, this file defines some useful symbol constants. Feel free to add your own as you see fit.

Testing your Code Generator: You will need a working scanner, parser, and semantic analyzer to
test your code generator. testEnvironment/CoolCompiler.java will automatically run with predesigned,
but somewhat buggy prior phases. You may modify CoolCompiler.java to use your own phases instead
(see comments in the code of CoolCompiler.java). If you want stable phases I-III, we recommend using
mycoolc in the bin/ directory of the repository, a shell script that “glues” together the generator with
the rest of compiler phases. Note that you need to call mycoolc using Linux from the directory where
your Java project is stored.

Designing your Code Generator:
There are many possible ways to write the code generator. One reasonable strategy is to perform

code generation in two passes. The first pass decides the object layout for each class, particularly the
offset at which each attribute is stored in an object. Using this information, the second pass recursively
walks each feature and generates stack machine code for each expression.

There are a number of things you must keep in mind while designing your code generator:

• Your code generator must work correctly with the Cool runtime system, which is explained in the
Cool-Manual.

• You should have a clear picture of the runtime semantics of Cool programs. The semantics are described
informally in the first part of the Cool-Manual, and a precise description of how Cool programs should
behave is given in Section 13 of the manual.

• You should understand the MIPS instruction set. An overview of MIPS operations is given in the spim
documentation, which is in the course handout and on the class Web page, and also available in the
resources folder of the repository.

• You should decide what invariants your generated code will observe and expect; i.e., what registers
will be saved, which might be overwritten, etc. You may also find it useful to refer to information on
code generation in the lecture notes and the textbook.

With this in mind, one possible organization for your code generator is:

1. compute the inheritance graph
2. assign tags to all classes in depth-first order
3. determine the layout of attributes, temporaries, and dispatch tables for each class
4. generate code for global data: constants, dispatch tables,...
5. generate code for each feature

Your code generator has to select MIPS instructions to emit, do some kind of register allocation
(very simple is fine), and layout the memory for the runtime. You need to decide what strategy to use
for each of these within the passes your code generator makes over the AST.

Hints on Getting Started:
Before you dive into writing your code generator, we strongly recommend that you write some small

Cool programs, compile them with coolc (on Linux), and carefully examine the relationship between

page 2 of 3



CISC 672 Advanced Compiler Construction Fall 2010

the Cool program and the MIPS assembly program. That is particularly helpful when planning how to
produce code for method calls, parameter passing, and other control constructs. Also, write your code
generator in an incremental manner, generating code for very simple programs, getting them working,
and then incrementally adding other more complex constructs to your code generator and corresponding
test cases. Note that you do not have to generate the exact same code as that produced by Coolc. It
just needs to maintain the semantics of the Cool program being compiled.

Spim and XSpim:
You will find spim and xspim useful for debugging your generated code. xspim works like spim in

that it lets you run MIPS assembly programs. However, it has many features that allow you to examine
the virtual machine’s state, including the memory locations, registers, data segment, and code segment
of the program. You can also set breakpoints and single step your program. Look at the documentation
for spim/xspim in the course handout or in the course web page.

Warning: One thing that makes debugging with spim difficult is that spim is an interpreter for
assembly code and not a true assembler. If your code or data definitions refer to undefined labels, the
error shows up only if the executing code actually refers to such a label. Moreover, an error is reported
only for undefined labels that appear in the code section of your program. If you have constant data
definitions that refer to undefined labels, spim won’t tell you anything. It will just assume the value 0 for
such undefined labels.

Garbage Collection (Extra Credit):
You may earn extra credit by making sure your code generator works correctly with the generational

garbage collector in the Cool runtime system. The skeleton contains a function CgenSupport.codeSelectGC
that generates code that sets GC options from command line flags. The command line flags that affect
garbage collection are -g, -t, and -T. Garbage collection is disabled by default; the flag -g enables it.
When enabled, the garbage collector not only reclaims memory, but also verifies that “-1” separates all
objects in the heap, thus checking that the program (or the collector!) has not accidentally overwritten
the end of an object. The -t and -T flags are used for additional testing. With -t the collector performs
collections very frequently (on every allocation). The garbage collector does not directly use -T; in coolc
the -T option causes extra code to be generated that performs more runtime validity checks. You are free
to use (or not use) -T for whatever you wish.

For your implementation, the simplest way to start is not to use the collector at all (this is the
default). If you decide to go for extra credit and use the collector, be sure to carefully review the garbage
collection interface described in the Cool-Manual. Ensuring that your code generator correctly works
with the garbage collector in all circumstances is not trivial.

How to Turn In:
Only complete submissions via the svn-repository will be accepted.

page 3 of 3


