
LinBox Lab – University of Delaware

December 5, 2011

D. Saunders, D. Wood, B. Youse

Recent alumni:

(J.P. May, Z. Wan, D. Roche, A. Duran, ...)

(Undergrads: M. Wezowicz, N. Messina, M. Fendt, D. Roche,

...)

1



linalg.org

LinBox development collaborators at Grenoble, Lyon, Nancy in

France; Waterloo and Calgary in Canada, Raleigh (NCSU),

Philadelphia(Drexel) in USA; others... High Performance Kernel

collaborators: J. Johnson, G. Harrison, L.C. Meng.

Funded by the National Science Foundation



Problems solved by LinBox

• solving systems of linear equations, matrix rank, determi-

nant, minimal polynomial, characteristic polynomial, canon-

ical forms (Frobenius, Smith).

• Exact input: integer and rational matrices

• Exact computation: no numeric approximation. (lots of

modular computation and Chinese remaindering).

• Sparse matrices

2



• Parallel computation

• Many applications

– Homology of simplicial complexes.

– multivariate polynomial equation system solving.

– Incidence structures in discrete mathematics.

• Problems may be huge (millions of equations, billions of co-

efficients)



Picture of Trefethen and TF class matrices

Very sparse matrices, about 2 logn non-zero entries per row in

Trefethen matrices.

3



Central Problems

• Effective representation of sparse matrices (store only nonze-

roes, irregular computations).

• Expresssion swell. Let A be a 1000 by 1000 matrix of 10 digit

entries and let b a 1000-vector of 10 digit entries. This data

requires about 4 megabytes of storage. The solution vector

x to Ax = b, will have rational number entries of very long

numerators and denominators. The output x will require 9

megabytes. This length 1000 vector is more of a memory

hog than the 1000 by 1000 matrix!

• Library design: software engineering.

4



Methods

• Blackbox (BB) methods are excellent for large sparse matri-

ces over finite fields. Wiedemann, Kaltofen-Saunders, Dumas-
Saunders-Villard...

• Sparse elimination (such as SuperLU of Demmel, et al) is ex-
cellent on matrices which are small, or slow to fill in. Dumas
implementation finite fields. Giesbrecht et al, new asymptot-
ically fast algorithm.

• Dense matrix eliminations are fast by using floating point
BLAS. Trick is to get exact, not approximate, results from

BLAS for our modular computations. Lapack floating point
linear system solving can also be used.

5



Example. Strongly regular graphs. Needed: rank of adjacency

matrix modulo 3. Problem is from combinatorialist Prof. Qing

Xiang (UD Math Dept).

Dickson strongly regular graph construction: The edges (ad-

jacency matrix entries) are generated by computations over a

“semi-field”. The adjacency matrix is dense and is n by n, where

n = 9k. But (and this is the opening for interesting algorithm

development), it is estimated that the rank will be small, only

about 2 ∗ 4k.

6



Dickson SRG

e dimension Rank 2007t 2009t 2011t

1 9 4 0.001s 0.0002s

2 81 20 0.021s 0.0012s

3 729 85 0.35s 0.022s

4 6,561 376 33.3s 0.95s

5 59,049 1654 0.5h 0.017h

6 531,441 7283 46.7h 1.2h

7 4,782,969 32064 - 96.4h

8 43,046,721 128000 ?? - - !!

Based on this data, we have conjectured that rank satisfies

R(k) = 4R(k − 1) + 2R(k − 2)−R(k − 3).



To add strength to the conjecture, our current goal is to do the

k = 8, n = 316 ≈ 43 million case.

Full storage of the matrix would be 2 petabytes.

Methods: Preconditioning and projection. Just in time matrix

representation. Out of core matrix representations. Packed stor-

age for mod 3 values and corresponding arithmetic operators.

Parallelism.

This problem is being used to stress test the CITADel project,

a UD network upgrade for scientific computation.

Watch for a course on parallel computation in Fall 2012.

7



Future work for the LinBox team

• Theory: For the run time, best asymptotic lower bounds (problem com-
plexity) 6= best asymptotic upper bounds (algorithm complexity).

– Design fast algorithms for general case.

– Design fast algorithms for special matrix classes.

– Prove any non-trivial lower bound.

• Practice: Best practical algorithm is determined by problem size and
shape, by hardware properties, by the available tools.

– Implement and test the best algorithms.

– Improve the library design for genericity and performance.

– Engineer the hybrid algorithms.

– Make greater use of parallelism and accelerators (GPU, FPGA).

– Continue to provide the best performing integer matrix computation
package in the world.

8


