
Scalable Architecture for Providing Per-flow Bandwidth Guarantees

Vasil Hnatyshin1 and Adarshpal S. Sethi2

1Department of Computer Science
Rowan University

201 Mullica Hill Rd.
Glassboro, NJ 08028

hnatyshin@rowan.edu

2Department of Computer and Information
Sciences,

University of Delaware,
Newark, DE 19716
sethi@cis.udel.edu

ABSTRACT
Despite numerous efforts, the problem of providing per-flow Quality of Service in a scalable manner still
remains an active area of research. This paper introduces a scalable architecture for support of per-flow
bandwidth guarantees, called the Bandwidth Distribution Scheme (BDS). The BDS maintains aggregate
flow information in the network core and distributes this information among boundary nodes as needed.
Based on the feedback from the network core the boundary nodes dynamically adjust resource allocations
of individual flows. The BDS architecture consists of three main components: the admission control, the
resource distribution mechanism, and the protocol for distributing the aggregate flow requirements in the
network. This paper describes components of the BDS architecture and illustrates how they operate
together to achieve scalable per-flow QoS.

Keywords: Quality of service, bandwidth distribution, network feedback, resource allocation

1. INTRODUCTION

To solve the problem of providing scalable per-flow
Quality of Service, a number of service differentiation
models have been proposed. The Integrated and
Differentiated Service (DiffServ) models are among the
most prominent approaches to providing Quality of Service
in the Internet. The Integrated Services model [2] requires
each router in the network to reserve and manage resources
for the flows that travel through it. In large networks,
millions of flows may simultaneously travel through the
same core routers. In such cases, managing resource
reservations on a per-flow basis may cause enormous
processing and storage overheads in the core routers. As a
result, the Integrated Services model is considered to be not
scalable to large networks and thus is not widely deployed in
the Internet. The DiffServ model [1] attempts to solve the
scalability problem of the Integrated Services approach by
combining flows that have similar quality of service
requirements into traffic aggregates or classes. The DS core
routers process incoming traffic based on the class the
packets belong to and thus maintain and manage resource
reservations only on a per-class/per-aggregate basis. The
DiffServ approach provides a scalable solution to the QoS
problem but it supports only coarse per-aggregate guarantees
which in certain cases may not be adequate.

This paper examines the architecture of an alternative
approach, called the Bandwidth Distribution Scheme (BDS).
The BDS core routers do not maintain per-flow information
(e.g. bandwidth requirements of individual flows); instead
core routers keep aggregate flow requirements. The amount
of information kept in the network core is proportional not to
the number of flows but to the number of edge routers,
which we believe does not raise scalability concerns. The

edge nodes maintain per-flow information and fairly allocate
network resources (e.g. bandwidth) among individual flows
according to the flow requirements and resource availability.
The dynamic resource allocation at the edge routers is
enabled by the network feedback which consists of periodic
path probing and explicit congestion notifications. Overall,
the BDS architecture consists of: the admission control
mechanism, which determines if a new flow can be admitted
into the network, the resource allocation mechanism, which
fairly distributes available bandwidth among individual
flows, and the protocol for distribution of the aggregate flow
requirements, which provides feedback to the network
routers about the changes of network characteristics.

The BDS approach relies on the basic idea of performing
per-flow management at the network edges and processing
traffic aggregates in the network core. This idea is not new
and has been examined before, for instance in [1,12,15,16].
However, the primary contribution of this work is a novel
approach to aggregating flow information in the network
core, dynamically distributing it among edge nodes, and then
using the aggregate flow requirements for fair distribution of
available bandwidth among individual flows.

The rest of the paper is organized as follows. Section 2
presents an overview of the BDS architecture. Section 3
introduces specification of flow requirements and the
admission control mechanism. Definitions of fairness and
the resource management mechanism are presented in
Section 4, while Section 5 discusses the BDS network
architecture and the protocol for dynamic distribution of
aggregate flow requirements. Section 6 discusses
implementation issues of the Bandwidth Distribution
Scheme, while Section 7 provides an example of the BDS

 2

operation. Finally, discussion and conclusions are presented
in Sections 8 and 9 respectively.

2. THE OVERVIEW OF THE BDS ARCHITECTURE

The BDS architecture provides a scalable solution to the
problems of fair per-flow bandwidth distribution and
congestion control. This architecture consists of three
components and a set of specifications and definitions. The
BDS components are: per-flow admission control which
denies access into the network for those flows that violate
existing per-flow guarantees, per-flow resource allocation
which dynamically distributes available bandwidth among
individual flows, and the Requested Bandwidth Range
Distribution (RBR) and Feedback protocol which distributes
aggregate flow requirements and generates congestion
notifications. The BDS specifications and definitions consist
of the network architecture which defines the working
environment of the BDS and makes the proposed solutions
scalable to large networks, definition of the flow
requirements which outlines the format for user expectations
for traffic treatment, and definitions of fairness which
specify what it means for the resource distribution to be fair.
The BDS components along with the BDS specifications and
definitions form the architecture of the Bandwidth
Distribution Scheme as shown in Figure 1.

Figure 1. The BDS architecture

In the BDS architecture each BDS component is closely

connected to a particular specification or definition as shown
in Figure 1. For example, the BDS admission control
determines if a new flow can enter the network based on the
provided specification of flow requirements, while the BDS
resource allocation mechanism distributes bandwidth among
individual flows based on provided definitions of fairness.
That is why, in subsequent sections, we introduce the BDS
components together with their corresponding BDS
specifications and definitions.

This paper defines a "flow" to be a sequence of packets
that travel from a given source host to a given destination

host. We only consider the flows that receive the BDS
treatment and which are therefore subject to the BDS
resource allocation. Similarly, the terms “resources”,
“capacity”, “load,” or “bandwidth” mean the resources,
bandwidth, etc. explicitly allocated by the network
administrator for the BDS traffic. This definition of a flow,
while different from the more conventional definition as a
sequence of packets between individual source-destination
applications (e.g., TCP or UDP streams), was chosen to
simplify the presentation of the BDS scheme. The BDS
architecture, as presented here, can be easily extended to
apply to the conventional definition of a flow.

3. DEFINITION OF FLOW REQUIREMENTS AND

ADMISSION CONTROL
In this paper we assume that both the minimum and the

maximum transmission rates of a flow are known ahead of
time. Thus, the flow requirements are defined in the form of
a range which is called the Requested Bandwidth Range

(RBR). The RBR of flow f , fRBR , consists of two

values: a minimum rate, fb , below which the flow cannot

operate normally, and the maximum rate, fB , that the flow
can utilize.

],[fff BbRBR = (1)

Based on this definition, the BDS network guarantees that
each flow would receive at least its minimum requested rate,

fb , while the leftover resources in the network are fairly
distributed among participating flows. To achieve these
guarantees, the network allocates to each flow an amount of
bandwidth not smaller than the flow’s minimum requested
rate, and denies network access to those flows whose
minimum rate guarantees cannot be met.

The purpose of admission control is to determine if a new
flow can be admitted into the network at its minimum rate
without violating existing QoS guarantees of other flows.
The problem of admission control was extensively examined
in the literature [3, 4, 8]. Traditionally, there are two types of
admission control: parameter-based and measurement-
based. In parameter-based admission control, the decision to
admit a new flow is derived from the parameters of the flow
specification. Usually, this type of admission control relies
on worst-case bounds and results in low network utilization,
although it does guarantee supported quality of service.
Measurement-based admission control relies on
measurements of the existing traffic characteristics to make
the control decision. Measurement-based admission control
supports higher network utilization. However, measurement-
based admission control may occasionally cause the quality
of service levels to drop below user expectations because of
its inability to accurately predict future traffic behavior.

Since the network guarantees that each flow will receive at
least its minimum requested rate, the edge nodes should
check the current resource allocation on a path before
granting a new flow request. Thus, to admit a new flow into

Scalability

 Fair Per-flow
Bandwidth
Distribution
Congestion

Control

BDS Goals

BDS Architecture

BDS Specifications
and Definitions

Per-Flow
Resource

Requirements

Definitions of
Fairness

Network
Architecture

Admission
Control

Mechanism

Resource
Allocation
Mechanism

BDS
Components

RDF
Protocol

 3

the network, the edge routers verify that the sum of the
minimum requested rates of all the flows that follow a
particular path, including a new flow, is smaller than the
capacity of the bottleneck link on that path. Link k is a

bottleneck link for flow f traveling on path P if k limits

the transmission rate of f on P .

We formally define the BDS admission control as follows.
Consider a network consisting of a set of L unidirectional

links, where link1 Lk∈ has capacity kC . The network is
shared by the set of flows, F , where flow Ff ∈ has the

RBR of],[ff Bb . At any time, the flow transmits packets

at a rate fR , called the allocated rate, which lies between
fb and fB . Let LL f ⊆ denote the set of links traversed

by flow f on its way to the destination. Also let

FF k ⊆ denote the set of flows that traverse link k . Then

a new flow φ with the RBR of],[φφ Bb is accepted in the

network if and only if:
k

Ff

f Cbb
k

≤+ ∑
∈

φ
 φLk ∈∀ (2)

Thus, a new flow, φ , is accepted into the network only if

the sum of the minimum requested rates of the active flows,
including the new flow, is not larger than the capacity of
each link on the path of flow φ to the destination. Equation

(2) is often called the admission control test.

4. DEFINITIONS OF FAIRNESS AND THE

RESOURCE ALLOCATION MECHANISM
In this section we introduce two definitions of fairness,

examine and compare the ability of these definitions to
maximize network throughput, and introduce the BDS
resource allocation mechanism that fairly distributes
available bandwidth among individual flows based on
introduced definitions of fairness.

4.1. Definitions of Fairness

Consider a core router’s interface k and a set of flows, kF ,

that travel through it. The set kF can be divided into two

disjoint subsets: the subset, kBF , of flows that have link k

as their bottleneck and the subset, kNBF , that contain all the

other flows. These subsets are called bottleneck flows and
non-bottleneck flows, respectively.

U
k

NB
k

B
k FFF = (3)

The aggregate bottleneck RBR and the aggregate RBR on
interface k are defined as follows:

1 In this paper the terms link, interface, and interface to a link are
often used interchangeably.

∑
∈

=
k
BFf

fk
B bb ∑

∈

=
k

BFf

fk
B BB (4)

∑
∈

=
kFf

fk bb ∑
∈

=
kFf

fk BB (5)

The aggregate bottleneck RBR is the sum of the RBRs of
the bottleneck flows on link k , while the aggregate RBR is
the sum of the RBRs of all the flows that travel through link
k . The total allocated rate of the non-bottleneck flows is

called the non-bottleneck rate and is denoted as k
NBR . The

amount of bandwidth left for distribution among the
bottleneck flows is the difference between the capacity of
link k and the non-bottleneck rate. This value is called the

bottleneck capacity, k
BC .

k
NB

Ff

kfkk
B RCRCC

k
NB

∑
∈

−=−= (6)

When a link is not fully utilized, its bottleneck capacity
could be larger then the sum of the allocated rates of the
bottleneck flows. Table 1 provides a summary of the
presented definitions.

Table 1. Summary of the traffic type
definitions for fairness specification

Flows RBR Capacity
All flows:

U
k

NB
k

B
k FFF =

Aggregate RBR:

∑
∈

=
kFf

fk bb

∑
∈

=
kFf

fk BB

Link Capacity:
k
NB

k
B

k RRC +=
 ∑

∈

≥
kFf

fk RC

Bottleneck flows:
k

NB
kk

B FFF −=

Aggregate
Bottleneck RBR:

∑
∈

=
k
BFf

fk
B bb

∑
∈

=
k
BFf

fk
B BB

Bottleneck
Capacity:

k
NB

kk
B RCC −=

 ∑
∈

≥
k

bFf

fK
B RC

Non-bottleneck
Flows:

k
B

kk
NB FFF −=

Aggregate
Non-bottleneck
RBR:
Not used,
not defined.

Non-bottleneck
Rate:

∑
∈

=
k
NBFf

fk
NB RR

k
B

kk
NB CCR −≤

Based on the notation specified in Table 1, we introduce

two definitions of fairness. First, the proportional fair share,
k
fFS , of the flow f on link k is defined as follows:

k
b

f
k
Bk

B

f
k
B

k
B

fk
f b

b
C

b

b
bCbFS =−+=)((7)

Using definition (7), each flow is allocated its minimum
requested rate plus a share of leftover bandwidth. We call
this definition of fairness proportional fairness because each
flow receives an amount of bandwidth proportional to its

 4

minimum requested rate. This definition of fairness should
not be confused with Kelly’s proportional fairness [8, 9],
which deals with different issues. Throughout the rest of this
paper, the expression “proportional fairness” refers to the
definition of fairness specified by equation (7).

A second definition of fairness uses a similar idea, except
that the excess bandwidth is distributed proportionally to the
difference between the flow’s maximum and minimum
requested rates. The idea is to allocate resources
proportionally to the amount of bandwidth a flow needs to
be completely utilized. We assume that a flow is completely
utilized when it sends traffic at its maximum requested rate,

fB . That is why this definition of fairness is called
maximizing utility fairness. The maximizing utility fair

share,
k
fFS , of flow f on link k is computed as follows:

()
k
B

k
B

ff
k
B

k
B

fk
f bB

bB
bCbFS

−
−−+= (8)

4.2. Maximizing Allocated Rate in the Network via

Definitions of Fairness
This section examines if resource distribution using the

proposed definitions of fairness achieves our primary
objective of maximizing allocated rate in the network. The
network has allocated rate maximized if the allocated rate on
every bottleneck link is maximized. Allocated rate on a link
is the sum of allocated rates of those flows that travel
through that link. Thus, the allocated rate on the bottleneck
link is maximized if the bottleneck capacity on that link is
completely distributed among the bottleneck flows. Also, the
bottleneck link has its allocated rate maximized if all the
bottleneck flows that travel through that link are allocated
and transmit at their maximum requested rates.

Let us consider an example of Figure 2, where each link is
provisioned with 48 Kbps of bandwidth. The RBR and path
for each active flow are shown in Table 2, while the
aggregate RBR is recorded next to the link as shown in
Figure 2.

Figure 2. Example of the resource distribution

The network of Figure 2 contains two bottleneck links:
B1-C1 and C2-B2. Link C2-B2 is the bottleneck for flows
F1, F2, and F4. The bottleneck capacity of C2-B2 equals the
link’s capacity because all the flows that travel through link
C2-B2 are bottleneck flows. Table 2 presents the resource
distribution using both definitions of fairness. As Table 2

shows, the proportional definition of fairness does not utilize
all available bandwidth on link C2-B2. In particular, using
the proportional fairness only 45 Kbps out of 48 Kbps of the
bottleneck link’s capacity is distributed among the flows,
leaving 3 Kbps of bandwidth unused. At the same time,
flows F1 and F4 are sending traffic below their maximum
requested rates and can utilize leftover bandwidth. Link B1-
C1 is also underutilized; however, since the bottleneck flow
F3 is allocated its maximum requested rate, the allocated
rate on the link B1-C1 is maximized.

On the other hand, the maximizing utility fairness
completely distributes all available resources among the
flows and keeps bottleneck link C2-B2 fully utilized. When
using maximizing utility definition of fairness, link B1-C1
also remains underutilized. However, as before, the allocated
rate on B1-C1 is maximized.

Table 2. Example of the resource distribution

Flow Flow
RBR

Path Proportional
Fair Share

F1 [8, 14] B1-C1-C2-B2 MIN (48*(8/32), 14) = 12
F2 [10,12] B1-C1-C2-B2 MIN (48*(10/32), 12) = 12
F3 [14, 18] B1-C1-C3-B3 MIN (24*(14/14), 18) = 18
F4 [14, 22] B4-C3-C2-B2 MIN (48*(14/32), 22) = 21
Flow Flow

RBR
Path Maximizing Utility

Fair Share
F1 [8, 14] B1-C1-C2-B2 MIN (8+16*6/16, 14) = 14
F2 [10,12] B1-C1-C2-B2 MIN (10+16*2/16, 12) = 12
F3 [14, 18] B1-C1-C3-B3 MIN (14+(48-26)*4/4, 18) = 18
F4 [14, 22] B4-C3-C2-B2 MIN (14+16*10/16, 22) = 22

Now let us examine the conditions when the proportional

and the maximizing utility definitions of fairness are unable
to maximize allocated rate on the bottleneck link. The link's
allocated rate is maximized in two cases:

1. The bottleneck flows are transmitted at their
maximum requested rates. In this case the link's
capacity may not be fully utilized.

2. The bottleneck capacity is completely distributed
among the bottleneck flows. In this case the link's
capacity is fully utilized.

To identify the conditions when the allocated rate on the
link is not maximized, we need to examine when the sum of
allocated rates of the bottleneck flows is smaller than the
corresponding bottleneck capacity.

 ()∑ ∑
∈ ∈

<=
k
B

f
BFf

k
B

Ff

fk
f

k
f CBFSR ,min (9)

To determine when inequality (9) holds, we consider the
following three cases:
Case 1: The fair shares of all the bottleneck flows are larger

than their corresponding maximum requested rates and
thus, all the bottleneck flows are allocated their
maximum requested rate. Although the link is
underutilized, its allocated rate is maximized because
the bottleneck flows are allocated their maximum
requested rates. This case corresponds to the situation
on link B1-C1 of Figure 2.

[14, 22]

From
F1, F2, F4 [14, 22] [14, 18]

[32, 44]
[18, 26]

[14, 18]

[32, 48]

F1 [8,14]

F3 [14, 18]

F2 [10,12]
B1

C1

F4 [14, 22]

B4

C3

C2

From F3

B3

B2

 5

Case 2: All the bottleneck flows are allocated the rates that
correspond to their fair shares. The sum of the allocated
rates of the bottleneck flows on a link equals the
bottleneck capacity of that link. In this case the link
capacity is completely utilized and the allocated rate on
the link is maximized.

Case 3: Among the bottleneck flows that travel through the
link there are flows that are allocated their maximum
requested rates because their fair shares are larger than
their corresponding maximum requested rates and there
are flows that are allocated only their fair shares. The
flows that transmit data at their maximum rates but
below their fair shares cause the link to become
underutilized. This case corresponds to the situation on
link C2-B2 described in the example of Figure 2.

Let us examine the last case for both definitions of
fairness in more detail. Using proportional fairness, Case 3
yields the following inequality:

f

f

k

k
Bf

k

f
k
B b

B

b

R
B

b

b
R >⇒> (10)

Thus, the proportional fairness does not maximize the
allocated rate on the link whenever the ratio between the
bottleneck capacity and the minimum requested rate of the
aggregate RBR is smaller than the ratio between the flow’s
maximum and minimum requested rates. The main reason
for this phenomenon is the fact that the proportional fairness
does not consider the maximum requested rates in the
computation of the fair shares. The maximizing utility
fairness, on the other hand, does include the maximum
requested rates in computation of the fair shares and thus
does not suffer from the above deficiency.

⇒>
−
−−+ f

kk

ff
kk

B
f B

bB

bB
bRb)(

() ⇒−>−
−
− ffff

kk

kk
B bBbB

bB

bR

⇒−>− kkkk
B bBbR kk

B BR > (11)

According to inequality (11) the maximizing utility
fairness causes the link to become underutilized only when
the bottleneck capacity is larger than the maximum
requested rate of the aggregate RBR. However, this means
that all the bottleneck flows transmit traffic at their
maximum requested rates and thus the allocated rate on the
link is maximized.

In summary, the maximizing utility fairness is able to
maximize allocated rate in the network, while the
proportional fairness fails to do that whenever the inequality
(10) holds, and thus, may require additional mechanisms to
improve the overall performance in the network.

4.3. The Resource Management Mechanism

To distribute bandwidth according to equations (7) – (8),
the resource management mechanism requires the
knowledge of such link characteristics as the aggregate

bottleneck RBR and the bottleneck capacity. However, these
characteristics are not readily available in the network.
Instead the core routers keep track of the capacity, the arrival
rate, and the aggregate RBR for each outgoing link and
distribute this information among the edge nodes. The edge
nodes use the aggregate RBR and link capacity instead of
the aggregate bottleneck RBR and the bottleneck capacity to
compute fair shares of individual flows. The edge nodes
compute the fair share of flow f on its bottleneck link k

using the proportional and maximizing utility definitions of
fairness as shown below. However, the flows that do not
have link k as their bottleneck would not adjust their
allocated rates.

k

f
k

k

f
kkfk

f b

b
C

b

b
bCbFS =−+=)((12)

()
kk

ff
kkfk

f bB

bB
bCbFS

−
−−+=

(13)

Clearly, such resource distribution may leave link k

underutilized because the non-bottleneck flows will transmit
data at rates below their fair shares on link k . Thus, the
edge nodes require additional means for utilizing the leftover
resources. A “water-filling” technique employed for
implementation of the max-min fairness [13, 17] allows the
edge nodes to completely distribute leftover capacity. The
idea of the “water-filling” is to increase allocated rates of
individual flows as long as the bottleneck link is not fully
utilized.

Periodic path probing, that delivers information about
availability of resources on the path, enables the edge routers
to implement the “water-filling” technique. Thus, in the
presence of excess bandwidth the edge routers increase
allocated rates of individual flows until available bandwidth
on the path is consumed completely. It was shown in [5] that
by distributing leftover bandwidth proportionally to the
individual flow requirements the resource management
mechanism achieves an optimal resource distribution
defined by equations (7) – (8).

The resource management mechanism enforces resource
allocation through the token bucket. Thus, if a flow transmits
data above its allocated rate then the token bucket discards
all excess traffic of that flow. As a result, the flow injects the
amount of data into the network that corresponds to its share
of the allocated resources.

5. THE BDS NETWORK ARCHITECTURE AND

THE RBR DISTRIBUTION AND FEEDBACK
PROTOCOL

5.1. The BDS Network Architecture
The Internet consists of a large number of routers that are

traditionally grouped into independent network domains as
shown in Figure 3. A cluster of interconnected routers that
are governed by the same administrator are called a network
domain. Each network domain contains two types of nodes:

 6

the edge or boundary routers and the core routers. Traffic
enters a network domain through the edge nodes called
ingress routers. It further travels through the core routers to
reach the network boundary and exits the domain through
the edge nodes called egress routers.

Figure 3. The BDS Network Architecture

The BDS core routers do not perform per-flow
management and treat arriving traffic on per-aggregate basis,
in a way similar to that of the Differentiated Services nodes
[1]. The BDS core routers provide feedback to the boundary
nodes about the changes of network conditions. The edge
nodes maintain per-flow information and manage activation
and termination of the flows. Based on the provided
feedback the edge nodes compute the fair shares of
bandwidth for their flows and then allocate available
resources accordingly.

It is reasonable to assume that the number of active flows
that enter and exit the network domain through a particular
edge router is fairly small. Thus, managing per-flow
information at the network boundaries allows this network
architecture to scale well to large networks [1]. Furthermore,
this architecture does not require the BDS approach to be
set-up everywhere in the Internet at once. Instead, each
network domain can choose to support the Bandwidth
Distribution Scheme at its own discretion, and thus
facilitates incremental deployment of the BDS architecture
in the Internet. If a network domain decides to support the
BDS, then a certain amount of resources are allocated for the
BDS traffic. These resources are fairly distributed among the
BDS flows only, thus isolating the BDS traffic from the rest
of the non-BDS flows traveling through this domain. This
paper examines the architecture of the Bandwidth
Distribution Scheme within the confines of a single network
domain. We plan to address the issue of inter-domain traffic
and deployment of the BDS approach in the Internet in
future work.

5.2. The RBR Distribution and Feedback (RDF) Protocol

The feedback protocol that governs the information
sharing between the nodes in the BDS network is called the
RBR Distribution and Feedback (RDF) protocol. The RDF
protocol is one of the most important components of the
BDS. The RDF protocol operates as the “glue” that holds the
BDS architecture together by supplying information to the
admission control and the resource management mechanism.

The RBR Distribution and Feedback protocol consists of
two major components that determine its name: distribution
of the aggregate RBR and periodic feedback from the
network.

The RBR Distribution and Feedback protocol consists of
three distinct phases: the path probing phase, the RBR
update phase, and the notification phase. Each phase is
classified based on the information flow as either edge-to-
core or core-to-edge. During the edge-to-core phases, the
information travels from the edge nodes into the network
core to update the aggregate flow requirements stored in the
Interfaces Tables. At the same time, during the core-to-edge
phases, information about the status of the network core is
being distributed among the edge routers to refresh network
information stored in the Path and the Link Tables.

The path probing phase discovers characteristics of a
particular path and works as follows. The ingress node
periodically generates a probe message on a path while the
egress node sends the probe message with collected path
characteristics back to the ingress node. The ingress node
uses received information to update its Path and Link
Tables. In addition, the core routers can discover the edge
nodes that send traffic through their interfaces using the path
probing phase. For example, upon the probe message arrival,
the core routers retrieve the identity of the edge node that
generated this probe and update corresponding edge node
entry in the Interfaces Table, which contains the identity of
the edge router and a countdown timer. If the entry in the
Interfaces Table for this edge router already exists, then the
core node resets the corresponding countdown timer.
Otherwise, the core router creates a new entry for this edge
router. The core router discards the edge node's information
whenever the countdown timer expires.

The purpose of the RBR update phase is to notify the core
routers about the changes to the aggregate RBR information
upon flow activation or termination. The edge routers initiate
the RBR update phase by generating the RBR update
message on a particular path. Each core router renews its
Interfaces Table based on the information received from the
RBR update message. The egress node terminates progress
of the RBR update message.

Only in the event of congestion do the core routers initiate
the notification phase. In this case, the core routers generate
congestion notification messages to the edge routers asking
them to adjust allocated rates of their flows. The edge
routers update their Path and Link Tables and re-compute
the fair shares of the corresponding flows based on the
information received from the congestion notification
messages.

Thus, the edge routers update the Path and Link Tables
based on the feedback received during the path probing and
the notification phases, while the core routers update their
Interfaces Tables during the RBR change and the path
probing phases. Table 4 provides a summary and
classification of the RDF protocol phases.

The Internet

Network
Domain

Network
Domain

Network
Domain

Network Domain

Ingress A

Core 1

Ingress B

Core 2

Core 3

 7

Table 4. Classification of the phases of the RDF protocol

Phase
Name

Direction of
info flow

Initiated
by

Cause of
Initiation

Path
Probing

Edge-to-Core,
Core-to-Edge

Edge
Routers

Periodic

RBR
Update

Edge-to-Core Edge
Routers

Flow
Activation/
Termination

Notification

Core-to-Edge Core
Routers

Congestion

Phase
Name

Updates Data
Structures

Carries Information

Path
Probing

Path Table,
Link Table,
Interfaces Table

Edge node ID,
Path Characteristics

RBR
Update

Interfaces Table RBR Change values

Notification

Path Table,
Link Table

Congested Link
Characteristics

6. IMPLEMENTATION OF THE BDS

ARCHITECTURE
This section discusses implementation details of the BDS

architecture. In particular, it describes a set of data structures
maintained in the routers of the BDS domain that allow
answering the following questions: How do the core routers
identify the edge nodes that should be notified about the
network changes? How do the edge routers identify the
flows that should adjust their allocated rates in the event of
the network change?

6.1. The BDS Traffic Processing at the Edge Routers

The edge routers maintain the Service Level Agreement
(SLA) Table that keeps track of the per-flow requirements
negotiated between the end-user and the network domain.
An entry in the SLA Table usually contains the following
information: the source and destination addresses, the
requested bandwidth range, the current allocated rate of a
flow, and possibly flow status (e.g., active, idle, etc.). Since
the flow SLA is usually negotiated ahead of time and is not
frequently updated, the SLA Table is sorted and indexed
based on the source-destination pair. This sorting allows
efficient retrieval and update of flow information.

Figure 4. The SLA Table

The source-destination pair was chosen as the primary

index into the SLA Table because we define a flow as a

sequence of packets that travel from the source node to the
destination. This definition of a flow simplifies the overall
traffic classification at the edge routers. Identifying flows
based only on the source-destination pair may limit
flexibility of the flow differentiation (e.g., such flow
identification does not allow distinguishing different flows
that originate from the same source and travel to the same
destination). However, such flow identification has little or
no effect on the overall BDS architecture, since the flow
definition could be easily extended to support a more
complex differentiation without any modification to the
main BDS components (e.g., admission control, resource
management, or the feedback protocol). For example, the
end user and the network domain can use the Type of
Service (ToS) field of the IP header as an additional
parameter for flow discrimination, which would require a
slight modification of the classification element and the SLA
Table only.

Let us examine how an arriving packet is processed at the
edge router. Upon a new packet arrival, an edge node uses
the header of the arriving packet to determine the identity of
the flow the packet belongs to. Then, the edge node retrieves
the status of the flow, which specifies if a flows is active or
not, along with the flow’s characteristics from the SLA
Table.

Figure 5. Packet processing at the edge nodes

If a packet belongs to a new flow, then the edge node
initiates the admission control procedures. If the flow can be
accepted into the network, then the edge node allocates a
share of available resources to the new flow, which may
entail adjusting allocated rates of the other flows, and
forwards the packet further. Otherwise, the packet is
dropped, and the source is notified that its request cannot be
granted.

If the packet belongs to an already active flow, then the
edge node verifies if the packet conforms to the rate
requirements by passing the packet through that active
flow’s token bucket. The token bucket of each flow has its
token generation rate set to the flow’s allocated rate as
determined by equations (10) and (11). If the packet
conforms to the token bucket specification, then the packet
is forwarded further. Otherwise, the packet is discarded.
Figure 5 shows the packet processing at the edge router.

New Flows

Traffic
Classifie

Unprocessed
packets

Admission
Control

Resource
Management

Token
Bucket

Non-
Conforming
packets

Conforming
packets

Existing
Flows

Packet
Dropper

…

MAX Requested Rate

Estimated Rate

Token Bucket

MIN Requested Rate

Flow SLA

… … …

Source

Source

Source

Destination

Destination

Destination

SLA Table

Data

Data

Data

 8

As Figure 5 shows, a packet from a new flow passes
through the admission control and the resource management
units before being forwarded. However, to compute the
allocated rate of a flow, or to determine if the flow can be
admitted into the network, an edge node needs to know the
path that the flow will traverse and identity and
characteristics of the bottleneck link. To provide the
necessary information for the admission control and the
resource management units, edge nodes maintain additional
data structures that keep track of the active paths. We define
a path or a route as a sequence of interfaces or links from the
ingress router to the corresponding egress node. An active
path is a route that is currently being used by at least one
active flow.

The table that keeps track of all active paths and their
characteristics is called a Path Table and is indexed by the
identity (e.g., IP address) of the egress node. An entry in the
Path Table contains a complete path to the corresponding
egress node and a list of flows that traverse it. To minimize
the amount of redundant information kept in the Path Table,
the edge routers also maintain a Link Table. The Link Table
keeps track of the individual link characteristics and is
indexed by the IP address of the link (or more precisely, the
IP address of the outgoing interface for the link). The list of
flows and the complete path maintained in each Path Table
entry are implemented via linked lists of pointers as shown
in Figure 6.

Figure 6. Data structures maintained in the edge node

The SLA Table is primarily used for packet classification,
while the Path and the Link Tables are primarily used for
admission control and resource management. For example,
to determine if a new flow could be admitted into the
network, the edge router identifies the path that the flow will
follow, retrieves information about the bottleneck link on
that path, and then performs the admission control test. In
addition, the Path and the Link Tables allow the edge nodes
to identify the flows influenced by the network changes.

Let us assume that characteristics of a particular link k in
the network were changed causing the flows that travel
through k to adjust their allocated rates. Once the edge
router learns about this event it identifies the flows that
should adjust their allocated rates as follows. First, the edge
router identifies the entry in the Link Table of link k . Then,

the edge router retrieves the list of paths that k belongs to.
Next, for each entry in the path list, the edge node retrieves a
set of flows that follow the corresponding path. The union of
the resulting flow sets is a list of all the flows that travel
through link k and thus should adjust their allocated rates.

Figure 7. The Interfaces Table

6.2. The BDS Traffic Processing at the Core Routers

Now let us examine the data structure that helps the core
routers to identify a set of edge nodes that should be notified
in the event of network changes (e.g., the change of the
characteristics of the outgoing link). Each core router
maintains a single Interfaces Table (Figure 7) that keeps
track of the core router's interface characteristics. Each entry
in the Interfaces Table maintains an identity (e.g., IP
address) of the outgoing link and its characteristics,
including the list of edge nodes that send traffic though this
interface.

Table 3. Summary of the data structures
maintained by the BDS nodes

Name Located

At
Required

by BDS Unit
Information
Maintained

SLA
Table

Edge
Nodes

Traffic Classifier,
Admission Control

Maintains flow
identities and their
service specification.

Path
Table

Edge
Nodes

Admission Control,
Resource
Allocation

Maintains active
paths and the flows
that follow these
paths.

Link
Table

Edge
Nodes

Admission Control,
Resource
Allocation

Maintains
characteristics of the
traversed links.

Interfaces
Table

Core
Nodes

Feedback protocol Maintains
information about
each outgoing link.

When characteristics of the link change (e.g., the link

became congested), the core router consults the Interfaces
Table to retrieve identities of the edge routers send traffic
through that link. The core router generates and sends

…

IP Address Data

IP Address Data

IP Address Data

Interfaces Table Link Capacity

Aggregate RLR

Arrival Rate

Edge Nodes List

…

Link Table

Egress
node

…

…

Path Table

Flow List

…

…

Complete
Path

Path List

Aggregate RLR

Link Capacity

…

Arrival Rate

…

Data

Data

IP Address Data

IP Address

IP Address

… … …

Source

Source

Source

Destination

Destination

Destination

SLA Table

Data

Data

Data

 9

explicit notification messages to each router in the retrieved
list. Upon such message arrival, the edge routers adjust
allocated rates of the corresponding flows as described in
Section 6.1. Table 3 provides a summary of the BDS data
structures, while the next section describes how the BDS
data structures are maintained.

Figure 8. Path probing phase

7. EXAMPLE OF THE BDS OPERATION

Let us consider the example of Figure 8 which presents
the network topology and the SLA Tables of the edge nodes
B1 and B4. Each link in the network of Figure 8 is
provisioned with 48 Kbps. Flows F2 and F3 travel from
ingress node B1 to egress nodes B3 and B4, respectively,
while flow F4 travels from ingress B5 to egress B2. New
flow F1 requests permission to enter the network at edge
node B1 to travel to egress node B2. However, edge node B1
does not have up-to-date information about the path to B2
and needs to initiate periodic path probing. The probe
message collects information about each link on the path,
and egress node B2 generates the probe reply message that
carries collected information back to ingress node B1.
Figures 9 and 10 show how the Path and the Link Tables of
edge node B1 were updated after the path probing phase.

Figure 9. The Path and the Link Tables
BEFORE the path probing phase

Based on the results of the path probing, edge node B1

discovers that link C2-B2 is the bottleneck for flow F1.
Since the minimum requested rate of the aggregate RBR
(including flow F1) is smaller than capacity of link C2-B2
(e.g., 36 and 48 Kbps, respectively), new flow F1 is admitted

into the network. As a result, edge node B1 initiates the RBR
update phase and notifies all core routers on the path to
egress B2 about the RBR change. Addition of another flow
on the path to egress B2 causes congestion on link C2-B2
and triggers the notification phase. Core router C2 generates
congestion notifications to edge nodes B1 and B5. Figure 11
shows the control message exchange during the RBR update
and the notification phases, while Figure 12 shows how the
Interfaces Table of router C2 is changed after the RBR
update phase.

Figure 10. The Path and the Link Tables
AFTER the path probing phase

After receiving a congestion notification from C2, edge

node B1 discovers that congested link C2-B2 belongs only
to the path to edge node B2. From the Path Table, edge node
B1 identifies F1 as the flow that contributes to congestion
and adjusts its allocated rate accordingly. Similarly, upon
receiving congestion notification, edge node B5 consults its
Path and Link Tables to discover that flow F4 should slow
down. Then, edge router B5 updates its Link Table with
fresh information about link C2-B2 and computes a new
allocated rate for F4.

Figure 11. The RBR update and the notification phases

8. DISCUSSION AND RELATED WORK

OVERVIEW
Most of the current architectures that support QoS in the

Internet have emerged from various proposals by the
Internet Engineering Task Force (IETF). In 1994, the IETF
introduced Integrated Services [2] architecture, followed by
the Differentiated Services [1] model in 1998. Although both

B3

Path Flows Dest.

F2

F3 B4

B1-C1-C2-B3

B1-C1-C4-B4

Path Table

Link Table

Link

B1-C1

C1-C2

C2-B3

C1-C4

C4-B4

[16, 22]

[8,12]

[8,12]

[8,10]

[8,10]

RLR Path List

B3, B4

B3

B3

B4

B4

Path Table

Path Flows Dest.

F2

F3

B3

B4

B1-C1-C2-B3

B1-C1-C4-B4

F1 B2 B1-C1-C2-B2

Link Table

RLR Path List Link

C1-C4

C4-B4 [8,10]

B4

B4

C2-B2 [36,52] B2

[8,10]

B3, B4, B2

B3, B2

B1-C1

C1-C2

[16, 22]

[8,12]

C2-B3 [8,12] B3, B2

SLA Table at B1

F1

F2

F3

[16, 24]

[8, 12]

[8, 10]
F4 [20, 28]

SLA Table at B5

F2

B3

Probe
Reply

Probe

Probe

Probe
Reply

Probe
Reply

Probe

New
flow F1

F2

F3

B1
C1

F4

B5

C2

F3

B4

F1, F4

B2

C4

CN

∆RLR

F2

B3

∆RLR

CN CN

∆RLR

New
flow F1

F2

F3

B1
C1

F4

B5

F3

B4

F1, F4

B2

C4

C2

CN

 10

approaches address the same problem of supporting quality
of service in the Internet, they are different in terms of
implementation and provided services. Integrated Services
supports end-to-end guarantees on a per-flow basis, while
DiffServ attempts to provide end-to-end guarantees based on
per-hop assurances for a small set of predefined traffic
classes. At the implementation level, Integrated Services
requires per-flow management in the network core, while the
Differentiated Services model employs a network
architecture that pushes per-flow management to the
network edges.

Figure 12. The Interfaces Table after the RBR update phase

The architecture presented in this paper attempts to
combine advantages of the Differentiated and Integrated
Services models and provides support for building per-flow
QoS services in a scalable manner. The network architecture
enables the Bandwidth Distribution Scheme to become
scalable, while per-flow bandwidth distribution at the
network edges provides framework for deployment of the
QoS services on a per-flow basis.

The RDF protocol relies on periodic path probing and
explicit network feedback for dynamic bandwidth allocation
and congestion control. This idea is not new and it has been
examined before. In particular, the Explicit Congestion
Notification (ECN) extension to IP [14] uses binary
feedback to notify ECN-capable transports about congestion
occurrences. Unlike the ECN extension, the network
feedback in the BDS model not only notifies the edge
routers about congestion but also carries additional
information such as the arrival rate and aggregate flow
requirements on the congested link. A similar idea is used in
ATM networks for Available Bit Rate (ABR) congestion
control [10], where the feedback carried by the resource
management cells also includes rate information. However,
the ABR congestion control relies on per-flow information
stored in the network core and tries to achieve utilization
goals first and only then seeks fairness. In contrast, in the
BDS model core routers do not store per-flow information;
instead they maintain aggregate flow requirements.
Furthermore, the BDS approach tries to achieve utilization
and fairness goals simultaneously: the edge nodes compute
the fair shares of individual nodes so as to consume all
bandwidth allocated for BDS traffic, and in the presence of
excess bandwidth individual flows increase their
transmission rates so as to preserve fairness. The Explicit
Control Protocol (XCP) [11] generalized the ECN proposal
by sending additional information about congestion. XCP
also does not require per-flow information in the network

core. However, unlike BDS, XCP is not a rate-based but a
window-based protocol that separates utility control from the
fairness control.

The BDS approach is designed primarily for support of
per-flow bandwidth guarantees. A similar feedback-based
idea of providing dynamic per-flow bandwidth allocation for
elastic traffic sources called simple rate control algorithm
was introduced in [12]. A traffic source is called elastic if it
does not require a fixed rate and can adjust its transmission
rate as needed. Unlike BDS, the boundary nodes in the
simple rate control algorithm employ knowledge of the level
of network congestion and the user utility functions to
determine a fair resource distribution among elastic sources.
The end users obtain the level of congestion through the
explicit acknowledgements (ACK) that carry the number of
congested links on a particular path.

The Stateless-Core approach [15] provides an interesting
solution for supporting per-flow QoS without keeping per-
flow information in the network core. The main idea of this
scheme relies on the Dynamic Packet State (DPS), where
control information is carried in the IP header of the data
packets [16]. The routers use the DPS information to provide
per-flow guarantees without maintaining per-flow state in
the network core. However, because of such features as
required route pining without which the SCORE/DPS model
will fail, use of existing IP header fields to encode control
information, additional per-packet processing in the network
core, inability to distribute excess bandwidth, and possible
network underutilization due to use of the upper bound of
the aggregate reservation for admission control, the
Stateless-Core architecture may not be deployed soon in
today’s Internet [15].

Evaluation of the BDS architecture [5, 6, 7] using Opnet
network simulations showed that the Bandwidth Distribution
Scheme is capable of fair distribution of available bandwidth
among individual flows under all network conditions and
thus, can support deployment of per-flow QoS services.
Furthermore, the BDS eliminates congestion when it arises,
keeps network utilization high by fair distribution of leftover
bandwidth among corresponding flows, causes small
overhead, and dynamically adjusts resource allocation in
respect to network changes. Finally, evaluation of the BDS
approach suggests that the Bandwidth Distribution Scheme
is scalable to large networks, although further investigation
of this feature under more realistic conditions is still needed.

9. SUMMARY AND CONCLUSOINS

In this paper we presented a scalable architecture for
deployment of per-flow QoS services in computer networks.
The BDS consists of three major components: the admission
control, the resource management mechanism, and the RDF
protocol. These components together with the network
architecture and a set of definitions and specifications form
the architecture for the Bandwidth Distribution Scheme.
This paper in detail describes the BDS components, the data
structures maintained in the BDS routers, and how the

After the RLR Update Phase

Link Edge Nodes

C2-B2 [20, 28] B5

… … …

RLR

Before the RLR Update Phase

Link Edge Nodes

C2-B2 [36, 52] B5, B2

… … …

RLR

 11

Bandwidth Distribution Scheme operates to achieve fair
distribution of bandwidth among individual flows.

REFERENCE:
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W.
Weiss," An Architecture for Differentiated Services," December
1998. IETF RFC 2475.
[2] R. Braden, D. Clark, S. Shenker, “Integrated Services in the
Internet Architecture: an Overview”, June 1994, IETF RFC 1633.
[3] L. Breslau, S. Jamin, and S. Shenker, "Comments on the
Performance of Measurement-Based Admission Control
Algorithms," In Proc. of IEEE INFOCOM’00, March 2000.
[4] R. Gibbens and E. Kelly, “Measurement-based connection
admission control”, In Proc. of 15th International Teletraffic
Congress, Amsterdam, Netherlands, June 1997.
[5] V. Hnatyshin, "Dynamic Bandwidth Distribution Techniques
For Scalable Per-Flow QoS," Ph.D. Thesis, University of
Delaware, 2003.
[6] V. Hnatyshin and A. S. Sethi, "Reducing load distribution
overhead with message aggregation," In Proc. of the 22nd IEEE
International Performance, Computing, and Communications
Conference, pp. 227-234, April 2003.
[7] V. Hnatyshin and A.S. Sethi, "Fair and Scalable Load
Distribution in the Internet," In Proc. of the International
Conference on Internet Computing, pp. 201-209, June 2002.
[8] F. Kelly, P.B. Key, and S. Zachary, "Distributed Admission
Control," IEEE Journal on Selected Areas in Communications, 18
(2000), pp.2617-2628.
[9] F. Kelly, A. Maulloo, and D. Tan, "Rate Control for
Communication Networks: Shadow Prices, Proportional Fairness
and Stability," Journal of the Operational Research Society, Vol.
49, No. 3, pp. 237-252, March 1998.
[10] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and B.
Vandalore, "The ERICA Switch Algorithm for ABR Traffic
Management in ATM Networks," IEEE/ACM Transactions on
Networking, Vol. 8, No. 1, February 2000, pp. 87-98.
[11] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion
control for future high bandwidth-delay product environments,” In
Proc. ACM SIGCOMM’02, August 2002.
[12] K. Kar, S. Sarkar, L. Tassiulas, “ A Simple Rate Control
Algorithm for Maximizing Total User Utility,” In Proc. of
INFOCOM 2001, April 2001.
[13] P. Marbach, “Priority Service and Max-Min Fairness,” In
Proc. of IEEE INFOCOM’02, June 2002.
[14] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP”, September 2001,
IETF RFC 3168.
[15] I. Stoica, “Stateless Core: A Scalable Approach for Quality
of Service in the Internet,” Ph.D. Thesis, Carnegie Mellon
University, 2000.
[16] I. Stoica, H. Zhang, "Providing Guaranteed Services
without Per-Flow Management," In Proc. ACM SIGCOMM’99,
September 1999.
[17] H. Tzeng and K. Sui, "On Max-Min Fair Congestion
Control for Multicast ABR Service in ATM," IEEE Journal on
Selected Areas in Communications, Vol. 15, No. 3, pp. 545-556,
April 1997.
[18] OPNET Modeler. OPNET Technologies Inc.
http://www.mil3.com.

