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ABSTRACT 
Despite numerous efforts, the problem of providing per-flow Quality of Service in a scalable manner still 
remains an active area of research. This paper introduces a scalable architecture for support of per-flow 
bandwidth guarantees, called the Bandwidth Distribution Scheme (BDS). The BDS maintains aggregate 
flow information in the network core and distributes this information among boundary nodes as needed. 
Based on the feedback from the network core the boundary nodes dynamically adjust resource allocations 
of individual flows. The BDS architecture consists of three main components: the admission control, the 
resource distribution mechanism, and the protocol for distributing the aggregate flow requirements in the 
network. This paper describes components of the BDS architecture and illustrates how they operate 
together to achieve scalable per-flow QoS. 
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1. INTRODUCTION 

To solve the problem of providing scalable per-flow 
Quality of Service, a number of service differentiation 
models have been proposed. The Integrated and 
Differentiated Service (DiffServ) models are among the 
most prominent approaches to providing Quality of Service 
in the Internet. The Integrated Services model [2] requires 
each router in the network to reserve and manage resources 
for the flows that travel through it. In large networks, 
millions of flows may simultaneously travel through the 
same core routers. In such cases, managing resource 
reservations on a per-flow basis may cause enormous 
processing and storage overheads in the core routers. As a 
result, the Integrated Services model is considered to be not 
scalable to large networks and thus is not widely deployed in 
the Internet. The DiffServ model [1] attempts to solve the 
scalability problem of the Integrated Services approach by 
combining flows that have similar quality of service 
requirements into traffic aggregates or classes. The DS core 
routers process incoming traffic based on the class the 
packets belong to and thus maintain and manage resource 
reservations only on a per-class/per-aggregate basis. The 
DiffServ approach provides a scalable solution to the QoS 
problem but it supports only coarse per-aggregate guarantees 
which in certain cases may not be adequate. 

This paper examines the architecture of an alternative 
approach, called the Bandwidth Distribution Scheme (BDS). 
The BDS core routers do not maintain per-flow information 
(e.g. bandwidth requirements of individual flows); instead 
core routers keep aggregate flow requirements. The amount 
of information kept in the network core is proportional not to 
the number of flows but to the number of edge routers, 
which we believe does not raise scalability concerns. The 

edge nodes maintain per-flow information and fairly allocate 
network resources (e.g. bandwidth) among individual flows 
according to the flow requirements and resource availability. 
The dynamic resource allocation at the edge routers is 
enabled by the network feedback which consists of periodic 
path probing and explicit congestion notifications. Overall, 
the BDS architecture consists of: the admission control 
mechanism, which determines if a new flow can be admitted 
into the network, the resource allocation mechanism, which 
fairly distributes available bandwidth among individual 
flows, and the protocol for distribution of the aggregate flow 
requirements, which provides feedback to the network 
routers about the changes of network characteristics.  

The BDS approach relies on the basic idea of performing 
per-flow management at the network edges and processing 
traffic aggregates in the network core. This idea is not new 
and has been examined before, for instance in [1,12,15,16]. 
However, the primary contribution of this work is a novel 
approach to aggregating flow information in the network 
core, dynamically distributing it among edge nodes, and then 
using the aggregate flow requirements for fair distribution of 
available bandwidth among individual flows.  

The rest of the paper is organized as follows. Section 2 
presents an overview of the BDS architecture. Section 3 
introduces specification of flow requirements and the 
admission control mechanism. Definitions of fairness and 
the resource management mechanism are presented in 
Section 4, while Section 5 discusses the BDS network 
architecture and the protocol for dynamic distribution of 
aggregate flow requirements. Section 6 discusses 
implementation issues of the Bandwidth Distribution 
Scheme, while Section 7 provides an example of the BDS 
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operation. Finally, discussion and conclusions are presented 
in Sections 8 and 9 respectively. 
 
2. THE OVERVIEW OF THE BDS ARCHITECTURE 

The BDS architecture provides a scalable solution to the 
problems of fair per-flow bandwidth distribution and 
congestion control. This architecture consists of three 
components and a set of specifications and definitions. The 
BDS components are: per-flow admission control which 
denies access into the network for those flows that violate 
existing per-flow guarantees, per-flow resource allocation 
which dynamically distributes available bandwidth among 
individual flows, and the Requested Bandwidth Range 
Distribution (RBR) and Feedback protocol which distributes 
aggregate flow requirements and generates congestion 
notifications. The BDS specifications and definitions consist 
of the network architecture which defines the working 
environment of the BDS and makes the proposed solutions 
scalable to large networks, definition of the flow 
requirements which outlines the format for user expectations 
for traffic treatment, and definitions of fairness which 
specify what it means for the resource distribution to be fair. 
The BDS components along with the BDS specifications and 
definitions form the architecture of the Bandwidth 
Distribution Scheme as shown in Figure 1. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The BDS architecture 

 
In the BDS architecture each BDS component is closely 

connected to a particular specification or definition as shown 
in Figure 1. For example, the BDS admission control 
determines if a new flow can enter the network based on the 
provided specification of flow requirements, while the BDS 
resource allocation mechanism distributes bandwidth among 
individual flows based on provided definitions of fairness. 
That is why, in subsequent sections, we introduce the BDS 
components together with their corresponding BDS 
specifications and definitions.  

This paper defines a "flow" to be a sequence of packets 
that travel from a given source host to a given destination 

host. We only consider the flows that receive the BDS 
treatment and which are therefore subject to the BDS 
resource allocation. Similarly, the terms “resources”, 
“capacity”, “load,” or “bandwidth” mean the resources, 
bandwidth, etc. explicitly allocated by the network 
administrator for the BDS traffic. This definition of a flow, 
while different from the more conventional definition as a 
sequence of packets between individual source-destination 
applications (e.g., TCP or UDP streams), was chosen to 
simplify the presentation of the BDS scheme. The BDS 
architecture, as presented here, can be easily extended to 
apply to the conventional definition of a flow.  
 
3. DEFINITION OF FLOW REQUIREMENTS AND 

ADMISSION CONTROL 
In this paper we assume that both the minimum and the 

maximum transmission rates of a flow are known ahead of 
time. Thus, the flow requirements are defined in the form of 
a range which is called the Requested Bandwidth Range 

(RBR). The RBR of flow f , fRBR , consists of two 

values: a minimum rate, fb , below which the flow cannot 

operate normally, and the maximum rate, fB , that the flow 
can utilize.  

],[ fff BbRBR =  (1) 

Based on this definition, the BDS network guarantees that 
each flow would receive at least its minimum requested rate, 

fb , while the leftover resources in the network are fairly 
distributed among participating flows. To achieve these 
guarantees, the network allocates to each flow an amount of 
bandwidth not smaller than the flow’s minimum requested 
rate, and denies network access to those flows whose 
minimum rate guarantees cannot be met. 

The purpose of admission control is to determine if a new 
flow can be admitted into the network at its minimum rate 
without violating existing QoS guarantees of other flows. 
The problem of admission control was extensively examined 
in the literature [3, 4, 8]. Traditionally, there are two types of 
admission control: parameter-based and measurement-
based. In parameter-based admission control, the decision to 
admit a new flow is derived from the parameters of the flow 
specification. Usually, this type of admission control relies 
on worst-case bounds and results in low network utilization, 
although it does guarantee supported quality of service. 
Measurement-based admission control relies on 
measurements of the existing traffic characteristics to make 
the control decision. Measurement-based admission control 
supports higher network utilization. However, measurement-
based admission control may occasionally cause the quality 
of service levels to drop below user expectations because of 
its inability to accurately predict future traffic behavior.  

Since the network guarantees that each flow will receive at 
least its minimum requested rate, the edge nodes should 
check the current resource allocation on a path before 
granting a new flow request. Thus, to admit a new flow into 
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the network, the edge routers verify that the sum of the 
minimum requested rates of all the flows that follow a 
particular path, including a new flow, is smaller than the 
capacity of the bottleneck link on that path. Link k  is a 

bottleneck link for flow f  traveling on path P  if k  limits 

the transmission rate of f  on P . 

We formally define the BDS admission control as follows. 
Consider a network consisting of a set of L  unidirectional 

links, where link1 Lk∈  has capacity kC . The network is 
shared by the set of flows, F , where flow Ff ∈  has the 

RBR of ],[ ff Bb . At any time, the flow transmits packets 

at a rate fR , called the allocated rate, which lies between 
fb  and fB . Let LL f ⊆  denote the set of links traversed 

by flow f  on its way to the destination. Also let 

FF k ⊆ denote the set of flows that traverse link k . Then 

a new flow φ  with the RBR of ],[ φφ Bb  is accepted in the 

network if and only if: 
k

Ff

f Cbb
k

≤+ ∑
∈

φ
   φLk ∈∀   (2) 

Thus, a new flow, φ , is accepted into the network only if 

the sum of the minimum requested rates of the active flows, 
including the new flow, is not larger than the capacity of 
each link on the path of flow φ  to the destination. Equation 

(2) is often called the admission control test. 
 
4. DEFINITIONS OF FAIRNESS AND THE 

RESOURCE ALLOCATION MECHANISM  
In this section we introduce two definitions of fairness, 

examine and compare the ability of these definitions to 
maximize network throughput, and introduce the BDS 
resource allocation mechanism that fairly distributes 
available bandwidth among individual flows based on 
introduced definitions of fairness.  
 
4.1. Definitions of Fairness  

Consider a core router’s interface k  and a set of flows, kF , 

that travel through it. The set kF  can be divided into two 

disjoint subsets: the subset, kBF , of flows that have link k  

as their bottleneck and the subset, kNBF , that contain all the 

other flows. These subsets are called bottleneck flows and 
non-bottleneck flows, respectively. 

U
k

NB
k

B
k FFF =    (3) 

The aggregate bottleneck RBR and the aggregate RBR on 
interface k  are defined as follows:  

                                                 
1 In this paper the terms link, interface, and interface to a link are 
often used interchangeably. 

∑
∈

=
k
BFf

fk
B bb  ∑

∈

=
k

BFf

fk
B BB  (4) 

∑
∈

=
kFf

fk bb  ∑
∈

=
kFf

fk BB  (5) 

The aggregate bottleneck RBR is the sum of the RBRs of 
the bottleneck flows on link k , while the aggregate RBR is 
the sum of the RBRs of all the flows that travel through link 
k . The total allocated rate of the non-bottleneck flows is 

called the non-bottleneck rate and is denoted as k
NBR . The 

amount of bandwidth left for distribution among the 
bottleneck flows is the difference between the capacity of 
link k  and the non-bottleneck rate. This value is called the 

bottleneck capacity, k
BC .  

k
NB

Ff

kfkk
B RCRCC

k
NB

∑
∈

−=−=  (6) 

When a link is not fully utilized, its bottleneck capacity 
could be larger then the sum of the allocated rates of the 
bottleneck flows. Table 1 provides a summary of the 
presented definitions.  
 

Table 1. Summary of the traffic type  
definitions for fairness specification 

 

Flows RBR Capacity 
All flows: 

U
k

NB
k

B
k FFF =  

Aggregate RBR:  

∑
∈

=
kFf

fk bb    

∑
∈

=
kFf

fk BB  

Link Capacity:  
k
NB

k
B

k RRC +=
 ∑

∈

≥
kFf

fk RC  

Bottleneck flows:  
k

NB
kk

B FFF −=  

Aggregate 
Bottleneck RBR:  

∑
∈

=
k
BFf

fk
B bb  

∑
∈

=
k
BFf

fk
B BB  

Bottleneck  
Capacity: 

k
NB

kk
B RCC −=

 ∑
∈

≥
k

bFf

fK
B RC

 
 

Non-bottleneck 
Flows:  

k
B

kk
NB FFF −=  

Aggregate 
Non-bottleneck 
RBR:  
Not used,  
not defined. 

Non-bottleneck 
Rate: 

∑
∈

=
k
NBFf

fk
NB RR

 
k
B

kk
NB CCR −≤  

 
Based on the notation specified in Table 1, we introduce 

two definitions of fairness. First, the proportional fair share, 
k
fFS , of the flow f  on link k  is defined as follows: 

k
b

f
k
Bk

B

f
k
B

k
B

fk
f b

b
C

b

b
bCbFS =−+= )(  (7) 

Using definition (7), each flow is allocated its minimum 
requested rate plus a share of leftover bandwidth. We call 
this definition of fairness proportional fairness because each 
flow receives an amount of bandwidth proportional to its 
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minimum requested rate. This definition of fairness should 
not be confused with Kelly’s proportional fairness [8, 9], 
which deals with different issues. Throughout the rest of this 
paper, the expression “proportional fairness” refers to the 
definition of fairness specified by equation (7).  

A second definition of fairness uses a similar idea, except 
that the excess bandwidth is distributed proportionally to the 
difference between the flow’s maximum and minimum 
requested rates. The idea is to allocate resources 
proportionally to the amount of bandwidth a flow needs to 
be completely utilized. We assume that a flow is completely 
utilized when it sends traffic at its maximum requested rate, 

fB . That is why this definition of fairness is called 
maximizing utility fairness. The maximizing utility fair 

share, 
k
fFS , of flow f  on link k  is computed as follows: 

( )
k
B

k
B

ff
k
B

k
B

fk
f bB

bB
bCbFS

−
−−+=  (8) 

 
4.2. Maximizing Allocated Rate in the Network via 

Definitions of Fairness 
This section examines if resource distribution using the 

proposed definitions of fairness achieves our primary 
objective of maximizing allocated rate in the network. The 
network has allocated rate maximized if the allocated rate on 
every bottleneck link is maximized. Allocated rate on a link 
is the sum of allocated rates of those flows that travel 
through that link. Thus, the allocated rate on the bottleneck 
link is maximized if the bottleneck capacity on that link is 
completely distributed among the bottleneck flows. Also, the 
bottleneck link has its allocated rate maximized if all the 
bottleneck flows that travel through that link are allocated 
and transmit at their maximum requested rates. 

Let us consider an example of Figure 2, where each link is 
provisioned with 48 Kbps of bandwidth. The RBR and path 
for each active flow are shown in Table 2, while the 
aggregate RBR is recorded next to the link as shown in 
Figure 2.  
 
 
 
 
 
 
 
 
 

Figure 2. Example of the resource distribution 
 

The network of Figure 2 contains two bottleneck links: 
B1-C1 and C2-B2. Link C2-B2 is the bottleneck for flows 
F1, F2, and F4. The bottleneck capacity of C2-B2 equals the 
link’s capacity because all the flows that travel through link 
C2-B2 are bottleneck flows. Table 2 presents the resource 
distribution using both definitions of fairness. As Table 2 

shows, the proportional definition of fairness does not utilize 
all available bandwidth on link C2-B2. In particular, using 
the proportional fairness only 45 Kbps out of 48 Kbps of the 
bottleneck link’s capacity is distributed among the flows, 
leaving 3 Kbps of bandwidth unused. At the same time, 
flows F1 and F4 are sending traffic below their maximum 
requested rates and can utilize leftover bandwidth. Link B1-
C1 is also underutilized; however, since the bottleneck flow 
F3 is allocated its maximum requested rate, the allocated 
rate on the link B1-C1 is maximized.  

On the other hand, the maximizing utility fairness 
completely distributes all available resources among the 
flows and keeps bottleneck link C2-B2 fully utilized. When 
using maximizing utility definition of fairness, link B1-C1 
also remains underutilized. However, as before, the allocated 
rate on B1-C1 is maximized. 
 

Table 2. Example of the resource distribution 
 

Flow Flow 
RBR 

Path Proportional 
Fair Share 

F1 [8, 14] B1-C1-C2-B2 MIN (48*(8/32), 14)     = 12 
F2 [10,12] B1-C1-C2-B2 MIN (48*(10/32), 12)  = 12 
F3 [14, 18] B1-C1-C3-B3 MIN (24*(14/14), 18)    = 18 
F4 [14, 22] B4-C3-C2-B2 MIN (48*(14/32), 22)   = 21 
Flow Flow 

RBR 
Path Maximizing Utility 

Fair Share 
F1 [8, 14] B1-C1-C2-B2 MIN (8+16*6/16, 14)         = 14 
F2 [10,12] B1-C1-C2-B2 MIN (10+16*2/16, 12)       = 12 
F3 [14, 18] B1-C1-C3-B3 MIN (14+(48-26)*4/4, 18) = 18 
F4 [14, 22] B4-C3-C2-B2 MIN (14+16*10/16, 22)     = 22 

 
Now let us examine the conditions when the proportional 

and the maximizing utility definitions of fairness are unable 
to maximize allocated rate on the bottleneck link. The link's 
allocated rate is maximized in two cases: 

1. The bottleneck flows are transmitted at their 
maximum requested rates. In this case the link's 
capacity may not be fully utilized. 

2. The bottleneck capacity is completely distributed 
among the bottleneck flows. In this case the link's 
capacity is fully utilized. 

To identify the conditions when the allocated rate on the 
link is not maximized, we need to examine when the sum of 
allocated rates of the bottleneck flows is smaller than the 
corresponding bottleneck capacity. 

 ( )∑ ∑
∈ ∈

<=
k
B

f
BFf

k
B

Ff

fk
f

k
f CBFSR ,min  (9) 

To determine when inequality (9) holds, we consider the 
following three cases: 
Case 1: The fair shares of all the bottleneck flows are larger 

than their corresponding maximum requested rates and 
thus, all the bottleneck flows are allocated their 
maximum requested rate. Although the link is 
underutilized, its allocated rate is maximized because 
the bottleneck flows are allocated their maximum 
requested rates. This case corresponds to the situation 
on link B1-C1 of Figure 2.  

[14, 22] 

From  
F1, F2, F4 [14, 22] [14, 18] 

[32, 44] 
[18, 26] 

[14, 18] 

[32, 48] 

F1 [8,14] 

F3 [14, 18] 

F2 [10,12] 
B1 

C1 

F4 [14, 22] 

B4 

C3 

C2 

From F3 

B3 

B2 
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Case 2: All the bottleneck flows are allocated the rates that 
correspond to their fair shares. The sum of the allocated 
rates of the bottleneck flows on a link equals the 
bottleneck capacity of that link. In this case the link 
capacity is completely utilized and the allocated rate on 
the link is maximized. 

Case 3: Among the bottleneck flows that travel through the 
link there are flows that are allocated their maximum 
requested rates because their fair shares are larger than 
their corresponding maximum requested rates and there 
are flows that are allocated only their fair shares. The 
flows that transmit data at their maximum rates but 
below their fair shares cause the link to become 
underutilized. This case corresponds to the situation on 
link C2-B2 described in the example of Figure 2.  

Let us examine the last case for both definitions of 
fairness in more detail. Using proportional fairness, Case 3 
yields the following inequality:  

f

f

k

k
Bf

k

f
k
B b

B

b

R
B

b

b
R >⇒>       (10) 

Thus, the proportional fairness does not maximize the 
allocated rate on the link whenever the ratio between the 
bottleneck capacity and the minimum requested rate of the 
aggregate RBR is smaller than the ratio between the flow’s 
maximum and minimum requested rates. The main reason 
for this phenomenon is the fact that the proportional fairness 
does not consider the maximum requested rates in the 
computation of the fair shares. The maximizing utility 
fairness, on the other hand, does include the maximum 
requested rates in computation of the fair shares and thus 
does not suffer from the above deficiency. 

⇒>
−
−−+ f

kk

ff
kk

B
f B

bB

bB
bRb )(  

( ) ⇒−>−
−
− ffff

kk

kk
B bBbB

bB

bR
 

⇒−>− kkkk
B bBbR kk

B BR >  (11) 

According to inequality (11) the maximizing utility 
fairness causes the link to become underutilized only when 
the bottleneck capacity is larger than the maximum 
requested rate of the aggregate RBR. However, this means 
that all the bottleneck flows transmit traffic at their 
maximum requested rates and thus the allocated rate on the 
link is maximized.  

In summary, the maximizing utility fairness is able to 
maximize allocated rate in the network, while the 
proportional fairness fails to do that whenever the inequality 
(10) holds, and thus, may require additional mechanisms to 
improve the overall performance in the network.  
 
4.3. The Resource Management Mechanism 

To distribute bandwidth according to equations (7) – (8), 
the resource management mechanism requires the 
knowledge of such link characteristics as the aggregate 

bottleneck RBR and the bottleneck capacity. However, these 
characteristics are not readily available in the network. 
Instead the core routers keep track of the capacity, the arrival 
rate, and the aggregate RBR for each outgoing link and 
distribute this information among the edge nodes. The edge 
nodes use the aggregate RBR and link capacity instead of 
the aggregate bottleneck RBR and the bottleneck capacity to 
compute fair shares of individual flows. The edge nodes 
compute the fair share of flow f  on its bottleneck link k  

using the proportional and maximizing utility definitions of 
fairness as shown below. However, the flows that do not 
have link k as their bottleneck would not adjust their 
allocated rates. 

 
k

f
k

k

f
kkfk

f b

b
C

b

b
bCbFS =−+= )(  (12) 

( )
kk

ff
kkfk

f bB

bB
bCbFS

−
−−+=

 
(13)

 
Clearly, such resource distribution may leave link k  

underutilized because the non-bottleneck flows will transmit 
data at rates below their fair shares on link k . Thus, the 
edge nodes require additional means for utilizing the leftover 
resources. A “water-filling” technique employed for 
implementation of the max-min fairness [13, 17] allows the 
edge nodes to completely distribute leftover capacity. The 
idea of the “water-filling” is to increase allocated rates of 
individual flows as long as the bottleneck link is not fully 
utilized. 

Periodic path probing, that delivers information about 
availability of resources on the path, enables the edge routers 
to implement the “water-filling” technique. Thus, in the 
presence of excess bandwidth the edge routers increase 
allocated rates of individual flows until available bandwidth 
on the path is consumed completely. It was shown in [5] that 
by distributing leftover bandwidth proportionally to the 
individual flow requirements the resource management 
mechanism achieves an optimal resource distribution 
defined by equations (7) – (8).  

The resource management mechanism enforces resource 
allocation through the token bucket. Thus, if a flow transmits 
data above its allocated rate then the token bucket discards 
all excess traffic of that flow. As a result, the flow injects the 
amount of data into the network that corresponds to its share 
of the allocated resources.  
 
5. THE BDS NETWORK ARCHITECTURE AND 

THE RBR DISTRIBUTION AND FEEDBACK 
PROTOCOL 

5.1. The BDS Network Architecture 
The Internet consists of a large number of routers that are 

traditionally grouped into independent network domains as 
shown in Figure 3. A cluster of interconnected routers that 
are governed by the same administrator are called a network 
domain. Each network domain contains two types of nodes: 
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the edge or boundary routers and the core routers. Traffic 
enters a network domain through the edge nodes called 
ingress routers. It further travels through the core routers to 
reach the network boundary and exits the domain through 
the edge nodes called egress routers.  
 
 
 
 
 
 
 
 
 
 

Figure 3. The BDS Network Architecture 
 

The BDS core routers do not perform per-flow 
management and treat arriving traffic on per-aggregate basis, 
in a way similar to that of the Differentiated Services nodes 
[1]. The BDS core routers provide feedback to the boundary 
nodes about the changes of network conditions. The edge 
nodes maintain per-flow information and manage activation 
and termination of the flows. Based on the provided 
feedback the edge nodes compute the fair shares of 
bandwidth for their flows and then allocate available 
resources accordingly. 

It is reasonable to assume that the number of active flows 
that enter and exit the network domain through a particular 
edge router is fairly small. Thus, managing per-flow 
information at the network boundaries allows this network 
architecture to scale well to large networks [1]. Furthermore, 
this architecture does not require the BDS approach to be 
set-up everywhere in the Internet at once. Instead, each 
network domain can choose to support the Bandwidth 
Distribution Scheme at its own discretion, and thus 
facilitates incremental deployment of the BDS architecture 
in the Internet. If a network domain decides to support the 
BDS, then a certain amount of resources are allocated for the 
BDS traffic. These resources are fairly distributed among the 
BDS flows only, thus isolating the BDS traffic from the rest 
of the non-BDS flows traveling through this domain. This 
paper examines the architecture of the Bandwidth 
Distribution Scheme within the confines of a single network 
domain. We plan to address the issue of inter-domain traffic 
and deployment of the BDS approach in the Internet in 
future work.  
 
5.2. The RBR Distribution and Feedback (RDF) Protocol  

The feedback protocol that governs the information 
sharing between the nodes in the BDS network is called the 
RBR Distribution and Feedback (RDF) protocol. The RDF 
protocol is one of the most important components of the 
BDS. The RDF protocol operates as the “glue” that holds the 
BDS architecture together by supplying information to the 
admission control and the resource management mechanism. 

The RBR Distribution and Feedback protocol consists of 
two major components that determine its name: distribution 
of the aggregate RBR and periodic feedback from the 
network. 

The RBR Distribution and Feedback protocol consists of 
three distinct phases: the path probing phase, the RBR 
update phase, and the notification phase. Each phase is 
classified based on the information flow as either edge-to-
core or core-to-edge. During the edge-to-core phases, the 
information travels from the edge nodes into the network 
core to update the aggregate flow requirements stored in the 
Interfaces Tables. At the same time, during the core-to-edge 
phases, information about the status of the network core is 
being distributed among the edge routers to refresh network 
information stored in the Path and the Link Tables.  

The path probing phase discovers characteristics of a 
particular path and works as follows. The ingress node 
periodically generates a probe message on a path while the 
egress node sends the probe message with collected path 
characteristics back to the ingress node. The ingress node 
uses received information to update its Path and Link 
Tables. In addition, the core routers can discover the edge 
nodes that send traffic through their interfaces using the path 
probing phase. For example, upon the probe message arrival, 
the core routers retrieve the identity of the edge node that 
generated this probe and update corresponding edge node 
entry in the Interfaces Table, which contains the identity of 
the edge router and a countdown timer. If the entry in the 
Interfaces Table for this edge router already exists, then the 
core node resets the corresponding countdown timer. 
Otherwise, the core router creates a new entry for this edge 
router. The core router discards the edge node's information 
whenever the countdown timer expires. 

The purpose of the RBR update phase is to notify the core 
routers about the changes to the aggregate RBR information 
upon flow activation or termination. The edge routers initiate 
the RBR update phase by generating the RBR update 
message on a particular path. Each core router renews its 
Interfaces Table based on the information received from the 
RBR update message. The egress node terminates progress 
of the RBR update message. 

Only in the event of congestion do the core routers initiate 
the notification phase. In this case, the core routers generate 
congestion notification messages to the edge routers asking 
them to adjust allocated rates of their flows. The edge 
routers update their Path and Link Tables and re-compute 
the fair shares of the corresponding flows based on the 
information received from the congestion notification 
messages.  

Thus, the edge routers update the Path and Link Tables 
based on the feedback received during the path probing and 
the notification phases, while the core routers update their 
Interfaces Tables during the RBR change and the path 
probing phases. Table 4 provides a summary and 
classification of the RDF protocol phases. 
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Table 4. Classification of the phases of the RDF protocol 
 

Phase 
Name 

Direction of 
info flow 

Initiated 
by 

Cause of 
Initiation 

Path 
Probing 

Edge-to-Core, 
Core-to-Edge 
 

Edge 
Routers 

Periodic 

RBR 
Update 

Edge-to-Core Edge 
Routers 

Flow 
Activation/ 
Termination 

Notification 
 

Core-to-Edge Core 
Routers 

Congestion 

Phase 
Name 

Updates Data 
Structures 

Carries Information  

Path 
Probing 

Path Table, 
Link Table, 
Interfaces Table 

Edge node ID,  
Path Characteristics  

RBR 
Update 

Interfaces Table RBR Change values 

Notification 
 

Path Table,  
Link Table 

Congested Link 
Characteristics 

 
6. IMPLEMENTATION OF THE BDS 

ARCHITECTURE 
This section discusses implementation details of the BDS 

architecture. In particular, it describes a set of data structures 
maintained in the routers of the BDS domain that allow 
answering the following questions: How do the core routers 
identify the edge nodes that should be notified about the 
network changes? How do the edge routers identify the 
flows that should adjust their allocated rates in the event of 
the network change?  
 
6.1. The BDS Traffic Processing at the Edge Routers 

The edge routers maintain the Service Level Agreement 
(SLA) Table that keeps track of the per-flow requirements 
negotiated between the end-user and the network domain. 
An entry in the SLA Table usually contains the following 
information: the source and destination addresses, the 
requested bandwidth range, the current allocated rate of a 
flow, and possibly flow status (e.g., active, idle, etc.). Since 
the flow SLA is usually negotiated ahead of time and is not 
frequently updated, the SLA Table is sorted and indexed 
based on the source-destination pair. This sorting allows 
efficient retrieval and update of flow information.  
 
 
 
 
 
 
 
 
 
 

 
Figure 4. The SLA Table 

 
The source-destination pair was chosen as the primary 

index into the SLA Table because we define a flow as a 

sequence of packets that travel from the source node to the 
destination. This definition of a flow simplifies the overall 
traffic classification at the edge routers. Identifying flows 
based only on the source-destination pair may limit 
flexibility of the flow differentiation (e.g., such flow 
identification does not allow distinguishing different flows 
that originate from the same source and travel to the same 
destination). However, such flow identification has little or 
no effect on the overall BDS architecture, since the flow 
definition could be easily extended to support a more 
complex differentiation without any modification to the 
main BDS components (e.g., admission control, resource 
management, or the feedback protocol). For example, the 
end user and the network domain can use the Type of 
Service (ToS) field of the IP header as an additional 
parameter for flow discrimination, which would require a 
slight modification of the classification element and the SLA 
Table only.  

Let us examine how an arriving packet is processed at the 
edge router. Upon a new packet arrival, an edge node uses 
the header of the arriving packet to determine the identity of 
the flow the packet belongs to. Then, the edge node retrieves 
the status of the flow, which specifies if a flows is active or 
not, along with the flow’s characteristics from the SLA 
Table.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Packet processing at the edge nodes 
 

If a packet belongs to a new flow, then the edge node 
initiates the admission control procedures. If the flow can be 
accepted into the network, then the edge node allocates a 
share of available resources to the new flow, which may 
entail adjusting allocated rates of the other flows, and 
forwards the packet further. Otherwise, the packet is 
dropped, and the source is notified that its request cannot be 
granted. 

If the packet belongs to an already active flow, then the 
edge node verifies if the packet conforms to the rate 
requirements by passing the packet through that active 
flow’s token bucket. The token bucket of each flow has its 
token generation rate set to the flow’s allocated rate as 
determined by equations (10) and (11). If the packet 
conforms to the token bucket specification, then the packet 
is forwarded further. Otherwise, the packet is discarded. 
Figure 5 shows the packet processing at the edge router. 
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As Figure 5 shows, a packet from a new flow passes 
through the admission control and the resource management 
units before being forwarded. However, to compute the 
allocated rate of a flow, or to determine if the flow can be 
admitted into the network, an edge node needs to know the 
path that the flow will traverse and identity and 
characteristics of the bottleneck link. To provide the 
necessary information for the admission control and the 
resource management units, edge nodes maintain additional 
data structures that keep track of the active paths. We define 
a path or a route as a sequence of interfaces or links from the 
ingress router to the corresponding egress node. An active 
path is a route that is currently being used by at least one 
active flow.  

The table that keeps track of all active paths and their 
characteristics is called a Path Table and is indexed by the 
identity (e.g., IP address) of the egress node. An entry in the 
Path Table contains a complete path to the corresponding 
egress node and a list of flows that traverse it. To minimize 
the amount of redundant information kept in the Path Table, 
the edge routers also maintain a Link Table. The Link Table 
keeps track of the individual link characteristics and is 
indexed by the IP address of the link (or more precisely, the 
IP address of the outgoing interface for the link). The list of 
flows and the complete path maintained in each Path Table 
entry are implemented via linked lists of pointers as shown 
in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Data structures maintained in the edge node 
 

The SLA Table is primarily used for packet classification, 
while the Path and the Link Tables are primarily used for 
admission control and resource management. For example, 
to determine if a new flow could be admitted into the 
network, the edge router identifies the path that the flow will 
follow, retrieves information about the bottleneck link on 
that path, and then performs the admission control test. In 
addition, the Path and the Link Tables allow the edge nodes 
to identify the flows influenced by the network changes. 

Let us assume that characteristics of a particular link k  in 
the network were changed causing the flows that travel 
through k  to adjust their allocated rates. Once the edge 
router learns about this event it identifies the flows that 
should adjust their allocated rates as follows. First, the edge 
router identifies the entry in the Link Table of link k . Then, 

the edge router retrieves the list of paths that k belongs to. 
Next, for each entry in the path list, the edge node retrieves a 
set of flows that follow the corresponding path. The union of 
the resulting flow sets is a list of all the flows that travel 
through link k and thus should adjust their allocated rates. 
    
 
 
 
 
 
 
 
 
 

Figure 7. The Interfaces Table 
 
6.2. The BDS Traffic Processing at the Core Routers 

Now let us examine the data structure that helps the core 
routers to identify a set of edge nodes that should be notified 
in the event of network changes (e.g., the change of the 
characteristics of the outgoing link). Each core router 
maintains a single Interfaces Table (Figure 7) that keeps 
track of the core router's interface characteristics. Each entry 
in the Interfaces Table maintains an identity (e.g., IP 
address) of the outgoing link and its characteristics, 
including the list of edge nodes that send traffic though this 
interface. 
 

Table 3. Summary of the data structures  
maintained by the BDS nodes 
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explicit notification messages to each router in the retrieved 
list. Upon such message arrival, the edge routers adjust 
allocated rates of the corresponding flows as described in 
Section 6.1. Table 3 provides a summary of the BDS data 
structures, while the next section describes how the BDS 
data structures are maintained. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Path probing phase 
 
7. EXAMPLE OF THE BDS OPERATION 

Let us consider the example of Figure 8 which presents 
the network topology and the SLA Tables of the edge nodes 
B1 and B4. Each link in the network of Figure 8 is 
provisioned with 48 Kbps. Flows F2 and F3 travel from 
ingress node B1 to egress nodes B3 and B4, respectively, 
while flow F4 travels from ingress B5 to egress B2. New 
flow F1 requests permission to enter the network at edge 
node B1 to travel to egress node B2. However, edge node B1 
does not have up-to-date information about the path to B2 
and needs to initiate periodic path probing. The probe 
message collects information about each link on the path, 
and egress node B2 generates the probe reply message that 
carries collected information back to ingress node B1. 
Figures 9 and 10 show how the Path and the Link Tables of 
edge node B1 were updated after the path probing phase.    
 
 
 
 
 
 
 
 
 
 
 

Figure 9. The Path and the Link Tables  
BEFORE the path probing phase 

 
Based on the results of the path probing, edge node B1 

discovers that link C2-B2 is the bottleneck for flow F1. 
Since the minimum requested rate of the aggregate RBR 
(including flow F1) is smaller than capacity of link C2-B2 
(e.g., 36 and 48 Kbps, respectively), new flow F1 is admitted 

into the network. As a result, edge node B1 initiates the RBR 
update phase and notifies all core routers on the path to 
egress B2 about the RBR change. Addition of another flow 
on the path to egress B2 causes congestion on link C2-B2 
and triggers the notification phase. Core router C2 generates 
congestion notifications to edge nodes B1 and B5. Figure 11 
shows the control message exchange during the RBR update 
and the notification phases, while Figure 12 shows how the 
Interfaces Table of router C2 is changed after the RBR 
update phase. 
 
 
 
 
 
 
 
 
 

 
 

Figure 10. The Path and the Link Tables  
AFTER the path probing phase 

 
After receiving a congestion notification from C2, edge 

node B1 discovers that congested link C2-B2 belongs only 
to the path to edge node B2. From the Path Table, edge node 
B1 identifies F1 as the flow that contributes to congestion 
and adjusts its allocated rate accordingly. Similarly, upon 
receiving congestion notification, edge node B5 consults its 
Path and Link Tables to discover that flow F4 should slow 
down. Then, edge router B5 updates its Link Table with 
fresh information about link C2-B2 and computes a new 
allocated rate for F4. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. The RBR update and the notification phases 
 
 
8. DISCUSSION AND RELATED WORK 

OVERVIEW  
Most of the current architectures that support QoS in the 

Internet have emerged from various proposals by the 
Internet Engineering Task Force (IETF). In 1994, the IETF 
introduced Integrated Services [2] architecture, followed by 
the Differentiated Services [1] model in 1998. Although both 
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approaches address the same problem of supporting quality 
of service in the Internet, they are different in terms of 
implementation and provided services. Integrated Services 
supports end-to-end guarantees on a per-flow basis, while 
DiffServ attempts to provide end-to-end guarantees based on 
per-hop assurances for a small set of predefined traffic 
classes. At the implementation level, Integrated Services 
requires per-flow management in the network core, while the 
Differentiated Services model employs a network 
architecture that pushes per-flow management to the 
network edges. 
 
 
 
 
 
 
 
Figure 12. The Interfaces Table after the RBR update phase 
 

The architecture presented in this paper attempts to 
combine advantages of the Differentiated and Integrated 
Services models and provides support for building per-flow 
QoS services in a scalable manner. The network architecture 
enables the Bandwidth Distribution Scheme to become 
scalable, while per-flow bandwidth distribution at the 
network edges provides framework for deployment of the 
QoS services on a per-flow basis. 

The RDF protocol relies on periodic path probing and 
explicit network feedback for dynamic bandwidth allocation 
and congestion control. This idea is not new and it has been 
examined before. In particular, the Explicit Congestion 
Notification (ECN) extension to IP [14] uses binary 
feedback to notify ECN-capable transports about congestion 
occurrences. Unlike the ECN extension, the network 
feedback in the BDS model not only notifies the edge 
routers about congestion but also carries additional 
information such as the arrival rate and aggregate flow 
requirements on the congested link. A similar idea is used in 
ATM networks for Available Bit Rate (ABR) congestion 
control [10], where the feedback carried by the resource 
management cells also includes rate information. However, 
the ABR congestion control relies on per-flow information 
stored in the network core and tries to achieve utilization 
goals first and only then seeks fairness. In contrast, in the 
BDS model core routers do not store per-flow information; 
instead they maintain aggregate flow requirements. 
Furthermore, the BDS approach tries to achieve utilization 
and fairness goals simultaneously: the edge nodes compute 
the fair shares of individual nodes so as to consume all 
bandwidth allocated for BDS traffic, and in the presence of 
excess bandwidth individual flows increase their 
transmission rates so as to preserve fairness. The Explicit 
Control Protocol (XCP) [11] generalized the ECN proposal 
by sending additional information about congestion. XCP 
also does not require per-flow information in the network 

core. However, unlike BDS, XCP is not a rate-based but a 
window-based protocol that separates utility control from the 
fairness control. 

The BDS approach is designed primarily for support of 
per-flow bandwidth guarantees. A similar feedback-based 
idea of providing dynamic per-flow bandwidth allocation for 
elastic traffic sources called simple rate control algorithm 
was introduced in [12]. A traffic source is called elastic if it 
does not require a fixed rate and can adjust its transmission 
rate as needed. Unlike BDS, the boundary nodes in the 
simple rate control algorithm employ knowledge of the level 
of network congestion and the user utility functions to 
determine a fair resource distribution among elastic sources. 
The end users obtain the level of congestion through the 
explicit acknowledgements (ACK) that carry the number of 
congested links on a particular path.  

The Stateless-Core approach [15] provides an interesting 
solution for supporting per-flow QoS without keeping per-
flow information in the network core. The main idea of this 
scheme relies on the Dynamic Packet State (DPS), where 
control information is carried in the IP header of the data 
packets [16]. The routers use the DPS information to provide 
per-flow guarantees without maintaining per-flow state in 
the network core. However, because of such features as 
required route pining without which the SCORE/DPS model 
will fail, use of existing IP header fields to encode control 
information, additional per-packet processing in the network 
core, inability to distribute excess bandwidth, and possible 
network underutilization due to use of the upper bound of 
the aggregate reservation for admission control, the 
Stateless-Core architecture may not be deployed soon in 
today’s Internet [15]. 

Evaluation of the BDS architecture [5, 6, 7] using Opnet 
network simulations showed that the Bandwidth Distribution 
Scheme is capable of fair distribution of available bandwidth 
among individual flows under all network conditions and 
thus, can support deployment of per-flow QoS services. 
Furthermore, the BDS eliminates congestion when it arises, 
keeps network utilization high by fair distribution of leftover 
bandwidth among corresponding flows, causes small 
overhead, and dynamically adjusts resource allocation in 
respect to network changes. Finally, evaluation of the BDS 
approach suggests that the Bandwidth Distribution Scheme 
is scalable to large networks, although further investigation 
of this feature under more realistic conditions is still needed.  
 
9. SUMMARY AND CONCLUSOINS 

In this paper we presented a scalable architecture for 
deployment of per-flow QoS services in computer networks. 
The BDS consists of three major components: the admission 
control, the resource management mechanism, and the RDF 
protocol. These components together with the network 
architecture and a set of definitions and specifications form 
the architecture for the Bandwidth Distribution Scheme. 
This paper in detail describes the BDS components, the data 
structures maintained in the BDS routers, and how the 
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Bandwidth Distribution Scheme operates to achieve fair 
distribution of bandwidth among individual flows.  
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