Formal Specification and Conformance
Testing of Army Communications Protocols *

Paul D. Amer® Mariusz A. Fecko® Adarshpal S. Sethi®
M. Umit Uyar® Ali Y. Duale®

8 Computer and Information Sciences Department
University of Delaware, Newark, DE

b Blectrical Engineering Department
The City College of the City University of New York, NY

Abstract

During the past six years, ATTRP-sponsored faculty and students from the Univer-
sity of Delaware and the City College of New York, collaborating with scientists
from CECOM and ARL, have helped advance the state-of-the-art in the design,
development, and testing of Army communications protocols. Working closely to-
gether, these groups specified a complex real-life protocol (MIL-STD 188-220) in
Estelle, and then used that formal specification to generate conformance test se-
quences. The test generation effort involved identifying and publishing results on
three theoretical problems: (1) the timing constraint problem, (2) the controllabil-
ity problem, and (3) the conflicting timers problem. Based on ATIRP’s research
results, two software packages were written to generate conformance test sequences
for 188-220. These packages helped generate tests for 188-220’s Data Link Types
1 and 4 services that were realizable without timer interruptions while providing a
200% increase in test coverage. The test cases have been delivered and are being
used by a CECOM conformance testing facility.

Key words: conformance testing, Estelle, formal description technique, formal
specification, MIL-STD 188-220, protocol specification, test case generation

* This work was supported by the US Army Research Office (DA AH04-94-G-0093),
and prepared through collaborative participation in the Advanced Telecommunica-
tions/Information Distribution Research Program (ATIRP) Consortium sponsored
by the U.S. Army Research Laboratory under the Federated Laboratory Program,
Cooperative Agreement DA AL01-96-2-0002.

M. Fecko is currently with Telcordia Applied Research, NJ. A. Duale is cur-
rently with IBM, NY.

1 Introduction

This paper summarizes a successful six-year effort to use the Estelle formal de-
scription technique to specify a complex real-life protocol - Military Standard
(MIL-STD) 188-220 - and then use that specification to automatically gener-
ate conformance tests for use in implementation testing. A key factor in this
success story has been the ATIRP-sponsored collaboration among five groups:
University of Delaware (UD), City College of the City University of New York
(CCNY), the Army Research Laboratory (ARL), US Army Communications-
Electronics Command (CECOM), and the Joint Combat Net Radio Working
Group (CNR-WG). 188-220 is being developed in the US Army, Navy and
Marine Corps systems for mobile combat network radios [18]. As a result of
this collaboration, the synergistic framework to develop C*I (Command, Con-
trol, Communications, Computers, and Intelligence) systems with the help of
formal methods serves as a model for future DoD networking standards de-
velopment [20].

Since this paper is a case study promoting a successful application of Estelle
to a real-life protocol, it includes a cross section of activities over the past six
years. Section 2 provides the background on the collaboration among the MIL-
STD 188-220 sponsors, research and development teams, and standards orga-
nizations. Sections 3 and 4 overview the formal description technique Estelle
and 188-220, respectively. Section 5 presents a part of the Estelle specification
of 188-220, and gives examples of errors and ambiguities found as a result
of formally specifying the protocol. A general approach adopted at UD and
CCNY to test generation from an Estelle formal specification is described in
Section 6. This section also summarizes four years of ATIRP-supported pub-
lished research results in test generation based on formal specifications. Sec-
tion 7 presents two systems of software: (1) efsm2fsm-rcpt, and (2) INDEEL
implemented to help generate conformance tests. Section 8 summarizes our
practical test generation results - the technology transfer of tests from ATIRP
to CECOM. Finally, Section 9 presents the authors’ personal perspective on
how the protocol development process is in general improved thanks to using
formal methods.

2 History of MIL-STD 188-220 Development

Formal methods in communications protocol specification and conformance
testing have been widely used in the design and testing of real-life proto-
cols [6,16,17,28,39,40,84]. In particular, the Estelle formal description tech-
nique (FDT) [11,32,61,64] has been used on several occasions to resolve am-
biguities within international protocols [8,14,38,53,62,77].

May 93 Oct 95
July 95 - “A” June 96

July 97 - draft “B” March 97
Jan 98 - approved “B” Jan 98
MIL-STD C)/;?
188-220 “ NO
(English) — (Estelle)
Combat Net Radio Protocol Engineering Lab
Working Group University of Delaware
CECOM

Fig. 1. History of MIL-STD 188-220 Development

In 1994, UD’s Protocol Engineering Laboratory began its involvement with
the US Army in using Estelle to formally specify the military standard MIL-
STD 188-220 [18]. An initial small contract with the Army Research Lab-
oratory supported both simulation and specification of the 1993 version of
188-220 [13,49]. This formal specification research effort received the atten-
tion of the CECOM Software Engineering Center in NJ. CECOM leads the
effort to evolve 188-220 to meet the Army’s requirements for battlefield digiti-
zation, through the Joint CNR-WG, itself responsible for the evolving 188-220
standard.

From 1995 to 1998, over fifty changes to the English specification of 188-220
resulted from UD’s efforts using Estelle to formally specify the standard [2,18]
(see Figure 1). While the English text takes precedence in case of disagree-
ment with the formal specification, UD’s Estelle specification of 188-220 is
an official part of the military standard. * It represents one of the first major
national or international standards officially including an Estelle specification.
Other examples include [31,34,35,52].

During this period, CECOM has been concurrently developing a Conformance
Tester that can automatically evaluate a 188-220 implementation identifying
its conformance with the standard. Our test generation research was initiated
as part of the US Army’s Advanced Telecommunication and Information Dis-
tribution Research Program (ATIRP) in January 1996, when UD’s Protocol
Engineering Lab began research collaboration with CCNY. Efforts were fo-
cused on automatically generating test cases from the Estelle specifications.
Generating tests from formal specifications such as pure finite state machines
(FSMs) has been extensively studied in the literature. But the inherent com-
plexity of 188-220 is far beyond specifying with pure FSMs, hence the need

! From this point on, 188-220 refers to version B, approved 1/98.

to use a more powerful specification language such as Estelle, International
Standard ISO 9074. Unfortunately, generating tests from Estelle specifications
presents difficult theoretical and practical problems. UD and CCNY faculty
and students continue to investigate these problems with the practical moti-
vation of applying the results towards 188-220 test case generation.

Automatic generation of tests from Estelle specifications presented various
theoretical problems:

(1) During testing, if active timers were not taken into account when the
tests were generated, these timers can disrupt the test sequences, thereby
failing correct implementations or worse, passing incorrect ones. For accu-
rate testing, timers must be incorporated as constraints into the extended
FSM (EFSM) model of an Estelle specification.

(2) Test sequence generation is limited by the controllability of an Implemen-
tation Under Test (IUT) [7]. Testers may not have direct access to all in-
terface(s) in which the IUT accepts inputs. Typically, the interfaces with
upper layers, or with timers are difficult or impossible to access during
real testing conditions. In this case, some inputs cannot be directly ap-
plied; the interactions involving such interfaces may render some portions
of the protocol untestable, and may introduce non-determinism and/or
race conditions during testing.

(3) Infeasible test sequences may be generated unless conflicting conditions
based on a protocol’s variables are resolved (the INDEEL software pack-
age (Section 7.2 addresses this problem).

(4) In particular, infeasible test sequences may result from a protocol’s vari-
ables modeling multiple timers that may be running simultaneously (the
so-called conflicting timers problem).

The timing and controllability issues were present in the EFSM model of the
Estelle specification of MIL-STD 188-220 [3,21]. Based on the results of inves-
tigating problems (1) and (2) by the UD and CCNY joint group [21,23,72],
UD has been providing CECOM with automatically generated test sets since
1997. The sizes of the resulting FSMs derived from the Estelle specification
range from 48 to 303 states, and from 119 to 925 transitions. The correspond-
ing test sequences range from 145 to 2,803 test steps. These tests are free of
interruptions due to unexpected timeouts while their coverage of the num-
ber of testable transitions increased from approximately 200 to over 700 by
utilizing multiple interfaces without controllability conflicts. The most recent
research focuses on the conflicting timers problem.

- Behavior: Communicating Extended FSMs + Pascal

- variables
- priorities é «
- delays L 2 H

- conditionals

e Architecture: Hierarchy and Interconnections of EFSMs

- modules
- interaction points @ oo 932
- channels I I

=2

Fig. 2. Estelle: ISO International Standard 9074
3 Estelle

In 1989, Estelle was published as one of two ISO International Standard For-
mal Description Techniques (FDT) for the specification of computer commu-
nication protocols [11,32]. As shown in Figure 2, Estelle specifies a protocol’s
behavior as a set of communicating extended finite state machines. To avoid
ambiguity among different readers of a specification, the Estelle language itself
has a formal, mathematical, implementation-independent semantics.

Estelle is an expressive, well-defined, well-structured language that is capable
of specifying distributed, concurrent information processing systems in a com-
plete, consistent, concise, and unambiguous manner. An Estelle specification
aims at discovering and resolving ambiguities in the original English document
that would cause interpretation problems for implementors.

An Estelle specification consists of two parts: an architecture and its behav-
ior. The architecture specifies a collection of systems of nested modules. Each
module’s behavior is described by an extended FSM. These EFSMs interact
via the sending of interactions over a set of channels. The interactions are con-
ceptually stored in infinite FIFO queues enabling transitions in the receiving
module which are fired when all enabling conditions are satisfied. A complex
set of rules define either a parallel or synchronous firing of transitions within
each EFSM. Overall, the many features of Estelle allow a user to formally spec-
ify a wide variety of network protocol behaviors. Further information about
Estelle can be found in [61,64].

One major benefit of an Estelle specification as a model of a communication
protocol is that it can be used as input to a conformance test generation
tool. Since Estelle makes it possible to create a complete and unambiguous

SEGMENTATION/REASSEMBLY
SELECTIVE DIRECTED BROADCAST

Transport TCP UDP
Internet IP
Network e D ——
Intranet QUTRANET RELAY) TOPOLOGY UPDATE

Data Link ‘lIYPE 1& TYPE

Physical | Asynchronous Mode ~ Synchronous Mode Packet Mode

Network Access | R-NAD P-NAD H-NAD DAP-NAD RE-NAD

Tactical Protocol Commercial Protocol

Fig. 3. MIL-STD 188-220 Protocol Architecture. The circles indicate those parts of
the protocol where FDTs were used during the development.

protocol model, the test cases generated from it can potentially achieve higher
fault coverage than hand-generated ones, and are reproducible with far less
effort as 188-220 evolves in the future. These advantages are the primary
motivations for using Estelle to specify 188-220.

4 MIL-STD 188-220

The Protocol Engineering Lab researchers at UD used Estelle to specify parts
of the 188-220 protocol suite. This suite was developed to meet the require-
ments for horizontal integration, seamless Internet communications and in-
creased mobility using combat network radios [20]. This protocol, a critical
piece of the new Joint Technical Architecture, is now mandated for CNR com-
munications. It is being implemented in US Army, Navy and Marine Corps
systems, and has been demonstrated initially during the Army’s Advanced
Warfighting Experiment in 1997. 188-220 is now receiving allied /international
attention, while portions of its protocol architecture have been promulgated
in the Internet Engineering Task Force. Expected outcomes from its use are:
seamless connectivity of C*I systems (discussed briefly in Section 9), horizon-
tally integrated information networks, and joint interoperable C*I systems for
the warfighter.

188-220, originally developed in 1993, evolved to 188-220A with substantial
new functionality, including support for new radio technology and integration
with Internet protocols (commercial IP, TCP, and UDP at the network and
transport layers). Version 188-220B, whose architecture is depicted in Fig-
ure 3, describes the protocols needed to exchange messages using CNR as the

Network Layer Interface

Network Layer - 1P, SNDCF, Intranet Interface

1. NL-UnitdataReg 1 7. OPoin-net.Reg
Trangport Layer 2.NL-Unitdetalnd 23 8. OP-leave-net Reg
3 NL-SausInd 9. OP-TU-response-made (response mode)
4, DL-UnitdetaReg (DL-Unitdateric, 1~16 dest addr, 10. OP-TU-relay-mode (relay mode)
Sc addr, top-id, precedence, throughput, defay, 11. OP-TU-topology-precedence (precedence)
0 1 2 refabilty, dta, dtalength) oo Internet(IP) Layer 12 OP-TU-min-update-per (period)
p 5. DL-Unitdata.Ind (1~16 degt addr, src addr, top-id, 13, OP-unable-tojoin-net.Ind
o MBO10ILI data, datalength) 0 21 14, OPain+-net.Ind
P> 6. DL-StatusInd (DL-Unitdataric, ack failure, D 23 15. OP-leave-net.Ind
a Network Layer 1~16 dest add*, Type 2 connection status) e 0SAP 21 SNDCF-UnitdataReq
P < 7. OP-join-niet Regy r 1187. o Subnetwork Dependent 22. NDCF-UnitdataInd
o 13115 8. OP-leave-niet Rey & Bt Convergence Function 23, SNDCF-Situs nd
r 9, OP-TU-response-mode (response mode) t 24, |L-Unitdata Reg (IL-Unitdataric, message
4 56 10. OP-TU-relay-mode (relay mode) 0 A type,1~16 dedt addr, rc addr, precedence,
11. OP-TU-opology-precedence (precedence) r 5% throughput, delay, refiaility, data, deta length)
12 OP-TU-mirk-update-per (period) 25.1L-Unitdatalnd (L-Unitdetaic 1~16 det
_ 13, OP-unable-tojoin-net.Ind Intranet Layer ador, o addr, data, datalength)
Datalink Layer 14, OPoin-net Ind %.1L-Satus Ind (L-Unitdaaeict, ack ailue,

15. OP-leave:net Ind 9101112 intranet path status, 1~16 dest ad)

56
Fig. 4. Network Layer Interface and Architecture

transmission media. These protocols include the physical, data link and part
of the network layer of the OSI model. The protocols apply to the interface
between host systems and radio systems. Hosts usually include communica-
tions processors or modems that implement these lower layer protocols. The
unshaded portions of Figure 3 indicate those protocols and extensions that
were developed specifically for use with CNR.

MIL-STD-188-220 Datalink layer specifies several service types, each intended
to handle different types of traffic with different quality of service (QoS) de-
mands. A 188-220 station can actually process several different types of traffic
simultaneously (and almost orthogonally). MIL-STD-188-220 Network Layer
consists of Internet (IP) Layer, Subnetwork Dependent Convergence Func-
tion (SNDCF), and Intranet Layer. The Intranet Layer has been dedicated to
routing intranet packets between a source and possibly multiple destinations
within the same radio network. The Intranet Layer also accommodates the
rapid exchange of topology and connectivity information—each node on the
radio network needs to determine which nodes are on the network and how
many hops away they are currently located.

5 188-220 Estelle Specification

To help a reader realize the magnitude of formally specifying a protocol of
188-220 size and complexity, we provide some numbers. The Datalink and
Network layer specifications consist of 69 and 19 documents, respectively, de-

SNDCF Layer ¢
SNDCFSAP
q
oo e 7S ma— N
o o 60616263 64656667 . XNP procedures END-END-
P ACK Timer
e w0,
r TOP-UPDATE TOP-UPDATE- 70, w a, L 50
a Timer REQ Timer 72 472 !
t o I | ><1
L []
0 434445 47,4849 3 73, 2526 5152
r 910,11,12 7

Topology Update Sour ce Directed Relay
*—0

41 lower mux 41 lower mux

56 LSAP 56
I Datalink Layer

Fig. 5. Intranet Layer Architecture

scribing the architecture, interfaces, EFSM, and state table of each module.
The Datalink layer specification is accompanied by three Estelle source code
files (for Datalink classes A, B, and C) with approximately 1,600, 8,700, and
2,400 lines of code, respectively. The Estelle source code for the Network layer
has 7,150 lines of code, defining 34 states and 370 transitions in 7 EFSMs.

Due to its large size, it is not possible to include the actual Estelle specifica-
tions in this paper. For a more detailed description of the semantics of Es-
telle specification components (communication channels, interactions, etc.),
the reader may should see www.cis.udel.edu/~amer/CECOM/. In the next
section, we present an overview of the Network Layer architecture with a
focus on the Topology Update and Source Directed Relay functions of the
Intranet sublayer.

5.1 Intranet Layer Architecture

Figure 4 shows the interface and general architecture of the Network layer.
The architecture represents the protocol stack at a single station, as well as
an interface with “operator module” which can interact with several different
layers in the stack. The operator module abstracts the link layer’s interactions
with both a human operator and a system management process. 2

Figure 5 shows the internal structure of the Intranet Layer. The two main

2 Note that the numbers in Figures 4 through 5 refer to interactions, and are
consistent throughout the figures (e.g., number 12 refers to OP-min-update-per in
all three figures).

Intranet Layer functionalities, Source Directed Relay (SDR) and Topology
Update exchange (TU), were encapsulated in separate component modules of
the Intranet Layer module. This simplifies the design of the FSMs that model
the entire layer, and also allows for generating test cases for each functionality
separately.

The SDR module receives IL_Unitdata_Req messages through SNDCFSAP in-
teraction point. It starts/stops a varying number of END_END_ACK timers,
one for each IP packet that has been sent but not yet acknowledged. The TU
module interacts with the SDR module by notifying it of any topology changes
that take place dynamically. The TU module communicates with two timers:
Topology_Update Timer and Topology_Update_Request Timer. The former is
started after a topology update message is sent by the station. According to
188-220A, a station is not allowed to send another topology update message
until the timer expires. The latter performs the same role for topology update
request messages.

Both SDR and TU modules can send and receive messages from the datalink
layer through their lower_muz interaction points—the messages from the two
modules are multiplexed by the parent Intranet Layer module. A peer operator
or management component is connected directly to the Topology Update mod-
ule and can set parameters that are relevant in topology update mechanism.
Part of the diagram inside the dash-lined rectangular contains modules that
handle XNP procedures: joining and leaving the net with either centralized or
distributed control, and parameter update requests.

5.2 Problems and Ambiguities Found in 188-220 through Formal Specifica-
tion

The primary goals in developing a formal specification of a protocol are to:

(1) discover and document problems and ambiguities that are commonly seen
in a standard written in natural language,

(2) verify the protocol,

(3) simulate the protocol,

(4) automate code implementation, and

(5) automate test generation process.

MIL-STD 188-220 project focuses on goals (1), (3), and (5), with simulation
studies done by the US Army as reported in [20]. Although the formal verifi-
cation of 188-220 is not part of the project, some of the errors found during
the formal specification can also be classified as part of goal (2). Achieving
goal (4) is an open issue; manufacturers, which were already developing im-
plementations before the Estelle specification was created, now have an option

to use the Estelle specifications for automated code generation.

In the process of developing the Estelle specifications of the Data Link and
Intranet Layers, more than fifty problems in the original English specifica-
tion have been documented. All of these problems were reported back to the
CNR Working Group and subsequently corrected in the standard. Here we
present just two examples of ambiguities found and corrected, demonstrating
the difficulty of defining protocol operations in a natural language.

Examples range from ambiguities such as:

44

e “... a station shall wait for some period of time bounded by the probability
of the remote ack time expiration.”

e The Intranet Layer allows a station to enter Quiet mode whereas the Data
Link layer refers to a station being in response mode off. It was ambiguous
how these two terms differ, if at all.

to more serious examples of correctness/completeness such as:

e Intranet routing was originally defined based on spanning trees of the In-
tranet topology. However the draft standard’s examples did not comply with
the mathematical definition of a spanning tree.

e The phrase “may report to the higher layer protocol, and may initiate ap-
propriate error recovery action” was added in several locations when the
datalink layer identified an error condition such as a lack of acknowledg-
ment after the maximum allowed number of retransmissions.

6 Test Case Generation

Test scripts (test cases) specify a logical sequence of test steps that are per-
formed by a Conformance Tester to individually test a given protocol entity.
The test scripts are input to the Conformance Tester which in turn stimulates
an IUT, and assesses the IUT’s responses to determine if the IUT correctly
implements the protocols. Since it is impossible to exhaustively test an imple-
mentation in practice, a good set of test scripts should at least check those
events that affect state/transition, boundary conditions, and stress points. The
test scripts themselves should be structured as independent modular compo-
nents to facilitate modifying and adding to the scripts in response to 188-220’s
continuing evolution.

A number of techniques have been proposed to generate test sequences from
Estelle specifications [46,47,65,66,82]. However, full Estelle specifications of
large systems may prove to be too complex for direct test case generation. As

Estelle (EFSM) specification
OO = OO
Nod TR0

! EFSMto FSM
Conversion?

“Constrained Postman Tours”
Fecko, Uyar, Amer, Sethi

1

b l l

’ " H ”

>'<Too difficult Approx'Tate FSM Tests

) 1. timing constraint

problem
Q/‘%) 2. controllability

problem

Pure FSM 3. conflicting timers
problem

Fig. 6. Test Generation from Extended FSMs

shown in Figure 6, there are several ways of generating test sequences from Es-
telle specifications. One approach would be to ezpand Estelle’s EFSMs thereby
converting them to pure FSMs. This expansion would be useful since methods
exist for generating tests directly from pure FSMs (e.g., [1]). Unfortunately,
completely converting even a simple EFSM can result in the state explosion
problem, that is, the converted FSM may have so many states and/or tran-
sitions that either it takes too long to generate tests, or the number of tests
generated is too large for practical use.

As an alternative, the UD and CCNY ATIRP research group used an interme-
diate approach, where an Estelle EFSM is partially expanded (hence resulting
in some more states and transitions), but not expanded completely to a pure
FSM. The EFSM is expanded partially just enough to generate a set of tests
that is feasible and practical in size. Determining which features to expand in
the general case is the difficult aspect of this research.

Test Case Generation Research:

Conformance test generation techniques reported in literature [1,7,43,50,59,66],
using a deterministic finite-state machine (FSM) model of a protocol specifi-
cation, focus on the optimization of the test sequence length. However, an IUT
may have timing constraints imposed by active timers. If these constraints are
not considered during test sequence generation, the sequence may not be real-
izable in a test laboratory. As a result, valid implementations may incorrectly
fail the conformance tests, or nonconformant IUTs may incorrectly pass the
tests.

Another problem in test sequence generation is due to the limited controlla-
bility of an IUT. Typically, the inputs defined for the interfaces with upper
layers or with timers cannot be directly applied by the tester. In this case, the
testability of an IUT may severely be reduced; in addition, non-determinism
and/or race conditions may occur during testing.

In Sections 6.1 and 6.2, we outline our earlier research results to eliminate the
timing constraints and controllability problems which appear in the EFSM
model of the 188-220. Our recent research focus on the so-called conflicting
timers problem, where infeasible test sequences may be generated unless con-
flicting conditions based on timers are resolved. These results are described in
Section 6.3.

6.1 Research Area 1: The Timing Constraint Problem

During testing, traversing each state transition of an IUT requires a certain
amount of time. A test sequence that traverses too many self-loops (a self-
loop is a state transition that starts and ends at the same state) in a given
state will not be realizable in a test laboratory if the time to traverse the
self-loops exceeds a timer limit as defined by another transition originating in
this state. In this case, a timeout will inadvertently trigger forcing the IUT
into a different state, and thereby disrupting the test sequence before all of
the self-loops are traversed. If this unrealizable test sequence is not avoided
during test generation, most IUTs will fail the test even when they meet the
specification. Clearly, this is not the goal of testing. Therefore, a properly
generated test sequence must take timer constraints into account.

Our research resuls [72,73] optimize the test sequence length and cost, under
the constraint that an IUT can remain only a limited amount of time in some
states during testing, before a timer’s expiration forces a state change. The
solution first augments an original graph representation of the protocol FSM
model. Then it formulates a Rural Chinese Postman Problem solution [48]
to generate a minimum-length tour. In the final test sequence generated, the
number of consecutive self-loops never exceeds any state’s specified limit. In
most cases, this test sequence will be longer than one without the constraint
since limiting the number of self-loop traversals likely requires additional visits
to a state which otherwise would have been unnecessary.

The methodology uses UIO sequences for state verification. However, the re-
sults presented also are applicable to test generation that uses distinguishing
or characterizing sequences. Earlier results of this study, limited to verifica-
tion sequences that are self-loops, are presented in [72]. The later paper [73]
generalizes these earlier results to both self-loop and non-self-loop verification

sequences.

6.1.1 Practical Motivation

Examples of protocols that contain many self-loop transitions in their FSM
models include ISDN Q.931 for supplementary voice services, MIL-STD 188-
220 [18] for Combat Net Radio communication, and LAPD [74], the data
link protocol for the ISDN’s D channel. For example, in ISDN Q.931 protocol
(Basic voice services, for the user side), each state has an average of 9 inoppor-
tune transitions, which requires the traversal of 18 self-loop transitions during
testing. A Q.931 implementation has several active timers that are running in
certain states, e.g., timer 7304 running in state Ouverlap sending, and timer
T310 in state Qutgoing call proceeding. An EFSM modeling the Topology Up-
date (TU) functionality of 188-220’s Intranet Layer has three active states in
which one or two timers are running [72].

It is not always possible to delay the timeout at a tester’s convenience. In
real protocols, there may be timers whose timeouts are difficult to set by the
tester, e.g., acknowledgment timers’ timeout values often are computed by the
implementation. Moreover, a tester may want to test an IUT’s behavior for
different settings of the IUT’s internal timers, to be able to test the IUT’s
correctness for various configurations of the timers.

In addition to the original self-loops of a specification model, additional self-
loops are typically created when generated test sequences use state verification
techniques such as unique input/output (UIO) sequences [58], distinguishing
sequences [5,42], or characterizing sequences [5,42].

6.1.2 Optimizing Tests under Timing Constraints

Let Esr and E,,q be the sets of self-loop and non-self-loop edges to be tested,
respectively. Let dsef(v;), the number of self-loops of vertex v;, be defined as
the number of edges in Ej;s incident on v;. Let dpin_seif(v;) be the minimum
number of times any tour covering all edges of E,, U E ¢ ¢ must include vertex
V; € V.

Let dgtate_ver (Vi) be the number of self-loop transitions used to verify whether
an IUT is in state v;. Suppose that during testing, a given vertex v; € V can
tolerate at most maz_sel f(v;) self-loops executed at one visit to vertex v;.
Attempting to remain in state v; to execute 1+ mazx_sel f (v;) self-loops would
result in disruption of a test sequence. Testing a self-loop transition involves
traversing the self-loop transition followed by applying the state verification
self-loop sequence, which contains dgate_yer (v;) transitions.

(a) m (C) Oimin_seif (V4) edlges
b :

Fig. 7. Conversion of v; in G (part (a)), to v; in G’ (part (b)) and to v;(l),v;‘@) in
G* (part (c)).

Due to space limitations, we are unable to include the detailed derivation of
Amin_seif (v;)- In [72], we prove that the minimum number of times vertex v;
must be visited in a test sequence is as follows:

dmin_self(vi) _ din(v;) if dserf(vi) < (din(vi) * A1(v;)) "
D(vi) if dgerp(vi) > (din(vi) * A1 (vi))

where dyy(v;) and d;;, (v;) are respectively the out-degree and the in-degree of
vertex v; in F,,4, and where

dserf(vi) = (din(vi) * A1 (v;))
Ba(vy) 1 2

N e)

max_sel f (v;)

1 + dstate_ver (Uz)

C(v;) =din(v5) + |

Ag(vi) =|

G (V',E') (G is obtained from G by removing self-loop edges) is converted
to G*(V*, E*) by splitting each vertex v; € V' satisfying

dmin_self (Uz) > max(dm (Ui)a dout (Uz)) (5)
into the two vertices v}, v7® € V* (Figure 7).

2

Then, v; M) is connected to v; "~ with a set of edges with cardinality of dyin_ser r(vi):

Ex def Uy v g((v:(l), v;(Z)), dmin_seif(vi)). Each edge in E is assigned infinite
capacity 8 and a zero cost . These fake edges will force additional visits to
v; in a minimum-cost tour of G.

Test sequence (34 edges)

e0eOele2e2e2ell0 e9e9e9el2elelel3e2esd
e6e7e6eb6e7elle9el22 eled e7e6e7e8eb6e7e5e0

Fig. 8. Minimum-cost test sequence without self-loop repetition constraint.

We then use network flow techniques (similar to Aho et al. [1]) to maximize
the flow on graph G* with minimum cost. This flow defines a minimum-cost
tour of G’ under timing constraints.

Example : Consider the FSM (represented by the graph G(V, E)) with self-loop
transitions shown in Figure 8. Suppose that vertices vy, v2, and vs of the FSM can
tolerate at most three, and v at most two self-loop transitions during each visit. Let
transitions €10 and ell correspond to timeouts. After either el0 or ell is triggered,
the FSM is brought into state vs.

UIO sequences and the values of max_self,dstate_ver and dpin_seiy for vertices
vy, U1, V9, and vy are as follows:

Vertex UIO maz_self dsate_ver dmin_self

v el 3 1 2
U1 e2 2 1 3
Vg eb,e7 3 2 4
V3 e9 3 1 2

The Chinese postman method [68] when applied to the graph without any self-loop
repetition constraint results in the test sequence

€0,e0,el,e2,e2,e2,el10,e9,e9,e9,¢e12,e0,el,e3,e2, e4,e6, e7,
e6,e6,e7,¢ell,e9,el2,¢el,e4,e7,e6,e7,e8,e6,e7, e5, el (6)

containing 34 edges. Edges used for the purpose of state verification appear in bold.

As can be seen from the underlined part of the above test sequence, after el is
traversed, the IUT should stay in state vy for a time that allows at least three
self-loop traversals. However, this part of the test sequence is not realizable in a
test laboratory because the timeout edge elQ will be triggered after the second

Test sequence (40 edges)

e0eOele2el0Oe9e9e9el2elele2e2edeb6e7elle9 el2
ele3e2ede6e6e7e5e0elede7e6e7e5elede8e6e7e5

Fig. 9. Minimum-cost test sequence with self-loop repetition constraint.

consecutive self-loop traversal (i.e., maz_self(vi) = 2). The IUT will prematurely
move into vy and the test sequence will be disrupted.

To address the problem of test sequence disruption due to timeouts, the graph of
Figure 8 is converted to the graph shown in Figure 9. Since in this example all UIO
sequences are self-loops, the simplified conversion presented in [72] is sufficient. The
vertices for which a premature timeout may disrupt a test sequence, which are v,
and vy, are split and then connected by dpmin_seif(v1) = 3 and dpyin_serf(v2) = 4
edges, respectively.

Considering the constrained self-loop problem, the test sequence for the graph of
Figure 9 is obtained as

€0,e0,el,e2,e10,e9,€9,e9,e12,e0,el,e2,e2,e4,e6,e7,ell,e9,el2,el, e3,
e2,e4,e6,e6,e7,e5,e0,el,ed,e7,e6,eT,ed, el,ed, el,e6,e7,ed (7)

containing 40 edges.

Although longer than that of Figure 8, the test sequence in Figure 9 is minimum-
length with the introduced self-loop constraint. During each visit to vertices vy, v1, va
and vs, the number of consecutive self-loop edges traversed is less than or equal to
the maximum allowed number of self-loop traversals. Therefore, this test sequence
is realizable in the test laboratory.

6.2 Research Area 2: The Controllability Problem

Consider a testing framework where the interface I; between the IUT and
the (N)-layer in the System Under Test (SUT) [7] is not externally accessible
(Figure 10). In other words, the inputs from (N+1)-layer cannot be directly
applied to the IUT, nor can the outputs generated by the IUT be observed at
(N+1)-layer. Such an interface I is called semicontrollable if F'SM; can be

SUT

* PCO/IAP FSM,
[]
bT J l c Iy (N+1)-layer
(N)-layer
Lower N-PDUs_ T

(N-1)-Service Provider

Fig. 10. Testing (N)-layer IUT with an (N+1)-layer semicontrollable interface.

utilized to supply inputs to the IUT. On the other hand, the tester can apply
inputs to the IUT directly by using a lower tester, which exchanges N-PDUs
with the IUT by using the (N-1)-Service Provider. The interface I, between
the lower tester and the IUT is therefore directly controllable.

The methodology presented in [23] addresses the problem of generating opti-
mal realizable test sequences in an environment with multiple semicontrollable
interfaces. The methodology fully utilizes semicontrollable interfaces in an IUT
while avoiding the race conditions. An algorithm is introduced in [23] to mod-
ify the directed graph representation of the IUT such that its semicontrollable
portions become directly controllable, where possible. In the most general
case, obtaining such a graph conversion may end up with exponentially large
number of nodes. However, it is shown [23] that special considerations such
as the small number of interfaces interacting with an IUT and diagnostics
considerations make the problem size feasible for most practical cases.

6.2.1 Practical Motivation

As motivation for solving the controllability problem, a real protocol is con-
sidered where an SUT’s (N+1)-layer must be utilized indirectly to test certain
transitions within the (N)-layer IUT.

188-220 focuses on 3 layers: Physical, Datalink, and Network. The Network
layer contains an Intranet sublayer. An SUT contains the (N)-layer IUT im-
plemented in the Datalink layer, and the Intranet sublayer, which is part of
the (N-+1)-layer, as shown in Figure 11.

In the CECOM’s environment used for testing 188-220 implementations, the
upper layers cannot be directly controlled. Therefore, the IUT’s transitions
that are triggered by the inputs coming from the Network layer are not
directly testable. An example SUT transition that causes a controllability

SUT

Transiton Input/Event Output/Action Intranet Sublayer

+1)-
DL-Unitdata.Req (N+1)-layer

t1 DL-Unitdata.Req PL-Unitdata.Req,
Start acknowledgment timer

Datalink Layer (N)-layer
t1l
A B1 T

Tester’s inputs/outputs

Fig. 11. MIL-STD 188-220: Example of the controllability problem

problem is the transition ¢1 from the Class A—Type 1 Service Datalink mod-
ule [18,21], shown in Figure 11. The input/event field for this transition re-
quires a DL_Unitdata_Req from the (N+1)-layer. Unfortunately, the interface
between the IUT and the (N+1)-layer is not directly accessible for generating
this input. Initially, it appears that transition ¢1 is untestable.

To trigger this transition, which requires the (N+1)-layer to pass a DL- Unitdata. Req
down to the (N)-layer, feedback from the (N+1)-layer must be used. To force

a DL-Unitdata. Req from the (N+1)-layer, the tester sends a PL-Unitdata.Ind

to the IUT (similar to the message a in Figure 10) that contains an intranet
layer message telling the (N-+1)-layer to relay the frame to a different net-
work node. The IUT outputs this message to the (N+1)-layer (see message

b in Figure 10), and the (N+1)-layer FSM responds by outputting the de-
sired DL-Unitdata. Req (message ¢ in Figure 10). Finally, the datalink layer
generates the desired output PL-Unitdata. Req (corresponding to message d in
Figure 10), which can be observed by the lower tester.

In fact, 70% of the transitions the Class A-Type 1 Datalink Service module
are based on not directly controllable inputs. Without indirect testing, test
coverage would be seriously limited; only approximately 200 transitions out
of 750 would be testable. However, by applying the technique outlined in this
paper, over 700 of defined transitions (>95%) can be tested. The application
of the presented technique to 188-220 is described in more detail in [22].

Similar controllability problems can also be pointed out in testing the IEEE
802.2 LLC Connection Component [23,36].

6.2.2 Optimizing Tests with Multiple Semicontrollable Interfaces

To optimize tests with multiple semicontrollable interfaces, modeling SUT as
a single FSM was proposed [23,24]. A semicontrollable interface I; is imple-
mented as a separate FIFO buffer. During testing, a buffer may be empty or

store an arbitrary sequence of inputs to the IUT generated indirectly through
I;. For each I;, we define variable w; that has a distinct value for each permu-
tation of inputs that the ¢-th buffer can hold. The proposed model consists of
graph G (which represents the IUT’s FSM) and the variables wy,ws, ..., wp.

An FSM modeling the SUT can be obtained by expanding G and wy, ws, . . ., wr
into G'(V', E'). An algorithm for converting G(V, E) to G'(V', E') proceeds
as follows (a detailed description of the algorithm along with its pseudocode
is available in [23,24]):

Step 0—Definitions:
Let B; denote a sequence of inputs buffered at the i-th semicontrollable interface.
Each state v’ € V' has two components: the original state v € V, and the current
configuration of F' buffers, i.e., v = (v, Bl, ... ,BF) The algorithm constructs all
possible buffer configurations with up to b; inputs buffered at I;.

Step 1—Initialize:

', root of G, as (r,0,---,0) (root of G and configuration of empty buffers); E
as empty set; V' as {r'}; Q, queue of vertices, as V'
Step 2-—Repeat until @ is empty:

(1) extract — (vstart, B1, - - - ,ép) as first element from @, where (El, e ,EF)
is current configuration

(2) given the current vertex v’ = (vstart, B1, ..., Br), perform the following steps

for each original outgoing edge € = (Vstart, Vend) € E:
e create new configuration (Bi,...,Br) based on the class of e (Fig-

ure 12):
- Class 1: e is triggered by an input from and generates output(s)
to an LT;

- Class 2: e is triggered by an input from an LT and generates an
output og; (buffered in B, to create a new configuration) at I;

- Class 3: e is triggered by a, j (extracted from B, to create a new
configuration) from I, and generates output(s) to an LT;

- Class 4: e is triggered by an input a, from I, and generates an
output og4; at I,. Apply rules for Class 3 and Class 2 to create a
new configuration.

e create new vertex v,,.,, = (Vend, B1,-..,Br) € V', and new edge e, ., =
(’U 7Unew) €FE , . .
e include new edges in E iff inputs in (By,..., Br) cannot trigger other

edges outgoing from wvgsgry
e append to Q end vertices v,,,,, € V' of new edges included in E'
Step 3—Retain only strongly connected states:
remove from V' all vertices from which r" cannot be reached, and remove from
E' all edges incident to such vertices

Based on the practical considerations discussed in [23], the algorithm can be
refined to meet the following objective: “generate a test sequence that, at any
point in time, avoids storing more than one input in only one of the buffers
(where possible).” Satisfying this objective yields a linear running time in the

Class 1: Class 2: Class 3:

X
y lo IUT FSMq FSMp
la Oq. o apk
I
3 IUT Yooyt
Class 4a: Class 4b:
FSM, FSM, FSM,
I | I
s " o, " e
LYo T IUT
y

SUT

I 1 |2I uT

Fig. 13. IUT interacting with two semicontrollable interfaces.

number of semicontrollable interfaces and the number of edges in G. If this
objective cannot be satisfied, the running time grows and nondeterminism
may not be avoided during testing.

Example : Consider the IUT of Figure 13 which is interacting with semicontrol-
lable FSM; and F'SMj through the semicontrollable interfaces I; and I, respec-
tively. The IUT’s FSM (represented by graph G) is described in Table 1. Transition
el, triggered by input x1 from the lower tester, generates output o1, to FSM;. In
response, F'SM; sends input a1,; which triggers transition e3. (In general, a; ; is the
expected response to o; j.) Transition e2, which is triggered by a lower tester’s input
x9, outputs 021 to F'SMs, which responds with input as triggering e4. Then e4
outputs o012 to F'SMy, which responds with a1 o triggering e8. On the other hand,
transitions eb, €6, €7, €9, and el0, can be triggered directly by the lower tester.
€6, €7, 9, and el0, do not generate outputs to the semicontrollable interfaces. e5
generates output oz 2 to F'SM>, which does not send any input to the IUT.

After conversion (Figure 14), each state of G is replaced with at most four related
states in G corresponding to the buffer configurations at a semicontrollable in-

Table 1
Inputs and outputs for the edges of Figure 13. A7z denotes receiving input z from
A. Bly denotes sending output y to B.

Edge Input Output Edge Input Output
el LT?J)l FSMl!Ol,l eb LT?ZL‘()‘ LT'ys
e2 LT?x FSMjloyq | e7 LT?7%7 LTy,
el FSMl?al,l LT"yg e8 FSMl?al,g LT’yg
ed FSMQ?GQJ FSMl!OLQ e9 LT?.Q:g LT!yg
eb LT?.Z‘5 FSMQ!OQ,Q el0 LT?.I‘H) LT!ylo
no inputs buffered : a; ; buffered

\

\

\

\

|

J— J— ‘ 77777777
Legend:

mandatory edge

————— >

optional edge

azylbuffered

a, ,buffered

Fig. 14. Graph transformation applied to the graph of Fig. 13. Mandatory and
optional edges appear in solid and dashed lines, respectively.

Table 2

Minimum-length test sequence for the IUT of Figure 13.
Step Edge Input Output Step FEdge Input Output
—1 el.0 LT7x; FSM;iloia 8 e7.2 LT7x; LT,

2 eb.1 LT7xs FSMlogs | — 9 €82 FSM?a1o LTyg

—3 e31 FSM?a1;, LTy3 10 e7.0 LT7xz7 LTy,
—4 e6.0 LT?7xg LTye — 11 eb.0 LT?x5 FSMjlog
—5 e7.0 LT?7xy LTy, — 12 e9.0 LT?7xg LTy
—6 €20 LT?x9 FSM>los 1 13 el0.0 LT?7zg LT
— 7 e43 FSMy?ay1 FSMilois 14 e6.0 LT7xg LTyg

terface. Each edge e is annotated as e.x, where x = 0,1,2,3, depending on the
input buffered in the e.x’s start state, as shown in Figure 14. The solid edges in
Figure 14 are the mandatory edges that are incident to nodes that correspond to
the case where both buffers are empty; the dashed-line edges are the ones that
can be traversed only when either buffer contains an input. Due to the practical
diagnostic considerations [23], we prefer testing edges when no inputs are buffered
in semicontrollable interfaces. The Aho et al. [1] optimization technique gives the
minimum-length test sequence for G' shown in Table 2. Steps with (—) indicate
that an edge is tested in this step. Note that, for simplicity, the UIO sequences [58]
are not included in this sequence.

6.3 Research Area 3: The Conflicting Timers Problem

To ensure feasibility of tests in a laboratory, automated test generation for
network protocols with timer requirements must consider conflicting condi-
tions based on a protocol’s timers. Our ATIRP research developed a new
model for testing real-time protocols with multiple timers, which captures
complex timing dependencies by using simple linear expressions involving
timer-related variables. Similar dependencies, but based on arbitrary linear
variables, are present in EFSM models of VHDL specifications [69]. Uyar and
Duale present algorithms for detecting [69] and removing [19,76] such inconsis-
tencies in VHDL specifications. The new modeling technique combined with
the inconsistency removal algorithms are expected to significantly shorten test
sequences without compromising their fault coverage.

The model, specifically designed for testing purposes, avoids performing a
full reachability analysis and significantly limits the explosive growth of the
number of test scenarios. These goals are achieved by incorporating certain
rules for the graph traversal without reducing the set of testable transitions.
The technique also models a realistic testing framework in which each I/0O
exchange takes a certain time to realize, and a tester has an ability to turn
timers on and off in arbitrary transitions and to algorithmically find proper
timeout settings.

The methodology presented in this paper is expected to detect transfer and
output faults [45], where an IUT moves into a wrong state (a state other than
the one specified) or generates a wrong output (an output other than the
one specified) to a given input, respectively. The detection of transfer faults
can significantly be improved by using the well-known state verification meth-
ods such as UIO sequences, characterization sets, or distinguishing sequences.
These techniques should be applied while generating a minimum-cost test se-
quence from the final conflict-free graph.

The proposed solution is likely to have a broader application due to a pro-

liferation of protocols with real-time requirements. The functional errors in
such protocols are usually caused by the unsatisfiability of time constraints
and (possibly conflicting) conditions involving timers; therefore, significant re-
search is required to develop efficient algorithms for test generation for such
protocols. Our methodology is expected to contribute towards achieving this
goal. The preliminary results are reported in [26].

In the test cases delivered to CECOM (see Section 8), conflicting conditions
based on 188-220’s timers are resolved by manually expanding EFSMs based
on the set of conflicting timers. This procedure results in test sequences that
are far from minimum-length. The technique presented here allows us to au-
tomatically generate conflict-free test sequences for 188-220.

Suppose that a protocol specification defines a set of timers K = {tm, ..., tmx },
such that a timer ¢m; may be started and stopped by arbitrary transitions
defined in the specification. Each timer ¢m; can be associated with a boolean
variable T; whose value is true if tm; is running, and false if ¢m; is not running.
Let ¢ be a time formula obtained from variables T7,..., T, by using logical
operands A, V, and —. Suppose that a specification contains transitions with
time conditions of a form “if ¢” for some time formula ¢. It is clear that there
may exist infeasible paths in an FSM modeling a protocol, if two or more
edges in a path have inconsistent conditions. For example, for transitions e;: if
(T;) then {¢1} and es: if (—1}) then {¢2}, a path (e, e2) is inconsistent unless
the action of ¢y in e; sets T; to false (which happens when timer tm; ex-
pires in transition e;). The solution to the above problem is expected to allow
generating low-cost tests free of such conflicts.

188-220’s Datalink Layer Estelle specification defines several timers that can
run concurrently and affect the protocol’s behavior. For example, BUSY and
ACK timers may be running independently in FRAME_BUFFERED state. If
either timer is running, a buffered frame cannot be transmitted. If ACK timer
expires while BUSY timer is not running, a buffered frame is retransmitted.
If, however, ACK timer expires while BUSY timer is running, no output
is generated. Besides Estelle specifications, feasibility constraints related to
multiple concurrent timers are also of special concern for specifications in

SDL.

The conflicting timers problem is a special case of the feasibility problem of
test sequences, which is an open research problem for the general case [27,67].
However, there are two simplifying features of the conflicting timers prob-
lem: (1) timer-related variables are linear, and (2) the values of time-keeping
variables implicitly increase with time. Considering these features makes it
possible to find an efficient solution to this special case.

6.3.1 General approach

The goal of the presented technique is to achieve the following fault coverage:
cover every feasible state transition defined in the specification at least once.
During the testing of a system with multiple timers, when a node v, is visited,
an efficient test sequence should either (1) traverse as many self-loops (i.e.,
transitions that start and end in the same state) as possible before a timeout or
(2) leave v, immediately through a non-timeout transition. Once the maximum
allowable number of self-loops are traversed, a test sequence may leave v,
through any outgoing transition. Such an approach does not let perform full
reachability analysis; however, it can be shown that considering only the above
two cases is sufficient to include at least one feasible path for each transition
provided such a feasible path is not prohibited by the original specification.

Suppose that there are 15 untested self-loops (each requiring 1 sec to test)
in state vs7, and that, when the test sequence visits vs;, the earliest timer to
expire is tmy, with 10.5 sec remaining until its timeout. In this example, the
test sequence will either leave vs; immediately or traverse 10 of the untested
self-loops. Suppose that the latter option is chosen and, later during the test
sequence traversal, vs7 is visited again with ¢mg leaving 3.1 sec until the earliest
timeout. In this case, 3 more untested self-loops of vs; can be covered by the
test sequence. Traversal will continue until all of the vs;’s self-loops are tested.

In more complicated cases, in addition to the aforementioned timing con-
straints, traversal of a self-loop requires that its associated time condition be
satisfied, i.e., certain timers be active (or, similarly, other timers be inactive).
These time conditions will also be taken into account while selecting which
self-loops to traverse. In the above example, if 6 or more self-loops of vs7; have
‘tm4 not running’ as their time condition, the test sequence, which tries to
execute 10 of the untested self-loops, will cause a timer conflict due to the
unsatisfiability of the time condition.

In general, the goal of an optimization is to generate a low-cost test sequence
that follows the above guidelines, satisfies time conditions of all composite
edges and is not disrupted by timeout events during traversal (i.e., contains
only feasible transitions).

Similar inconsistencies, but based on arbitrary linear variables, are present in
EFSMs modeling VHDL specifications. ATIRP researchers Uyar and Duale
presented algorithms for detecting [69] and removing [70] inconsistencies in
VHDL specifications. Recent research in UD and CCNY focused on adapting
these algorithms to detecting and removing inconsistencies caused by a pro-
tocol’s conflicting timers. The software implementation of these algorithms
developed within ATIRP is described in the next section.

7 Software for Automated Test Generation

The process of generating tests involved the development of two systems of
software: (1) efsm2fsm-rcpt, and (2) INDEEL. These two systems are now
described in turn.

7.1 efsm2fsm-rcpt

Figure 15 depicts the major software components that were developed to gen-
erate test sequences from an EFSM [25]. The software contains two packages:
(1) efsm2fsm, and (2) rept. The former was designed and implemented at
UD. The latter was based on the software written at CCNY, which originally
was able to handle graphs of at most 100 transitions in a plain input/output
format, without any of the additional parameters specifically required for 188-
220B tests. This component was enhanced to generate tests for 188-220B for a
proprietary CECOM’s format. Also, the software was significantly redesigned
to process large graphs (1000s of transitions), which enabled its application
to more complex real-life protocols.

efsm2fsm

EFSM to ESM FSM reduction based

EFSM ; expansion — on transition testing @

equivalence

Y rural symmetric , lestsequence |
@—i’augmentation of G+ generation in

GasG" CECOM format

Fig. 15. Software for automated test generation.

7.1.1 efsm2fsm

efsm2fsm takes a protocol’s EFSM representation as input and performs its
expansion to an FSM. Each EFSM’s transition is associated with the following
parameters: transition name in the Estelle specification, transition description,
start and end states, input and output names, numerical values specifying the
corresponding fields in 188-220B’s PDUs, and changes in the variables’ values
(i.e., start and end configurations. To express the start and end configurations,
a simple notation was defined. In the potential future work on this package, it
is essential that this notation be replaced with a different one, which should
be more expressive and flexible.

To facilitate creating the input to efsm2fsm, spontaneous transitions are al-
lowed to be specified in the input EFSM. These transitions are then concate-
nated with regular transitions (i.e., triggered by an external input) to eliminate
spontaneous transitions from the resulting FSM. This procedure can be briefly
described as follows. Suppose that in a path

vo B v By v Do v, B, (8)

where v; and ¢; denote a state and a transition, respectively, t; is regular
and tg,...,%, are spontaneous. Then transitions %, ...,t, are concatenated
into a single transition ¢, from state vy to state v,. Their inputs, outputs,
and other parameters are combined and associated with transition ¢, ,,. States
Vo, ...,VU,_1 are marked as temporary, and subsequently removed from the
FSM along with their outgoing transitions.

After the expansion to an FSM, transitions that are equivalent from a testing
point of view could be identified, leading to a minimum-cost test sequence
covering at least one transition from each equivalence class. However, building
such a test sequence is NP-hard [25]. Therefore, simple heuristics bringing
about 20%-30% reduction in the number of transitions were implemented.

It is possible to manually prepare the input file for the package such that an
EFSM’s states are divided into two groups: (1) states with no inputs buffered,
and (2) states with one input buffered at a semicontrollable interface. Then
semicontrollable interfaces can be utilized for certain simplified cases such as
using the 188-220B Intranet layer for indirect testing of 188-220B Datalink
layer (in these tests, only one semicontrollable interface is used with a small
number of semicontrollable inputs). A self-loop repetition constraint can be
taken into account for the case of self-loop state verification sequences.

To run the package for a protocol’s EFSM specified in file protocol.efsm, the
following command must be used:

efsm2fsm protocol.efsm [~options]

producing two files protocol.fsm and protocol.stat. The former contains the
output FSM. All information associated with transitions in the input EFSM
is preserved. This enables the rept package to populate the fields defined in
the CECOM’s proprietary format for test sequences. The latter file contains
statistics such as the number of states and transitions in the EFSM/FSM, and
the percentage effectiveness of the reduction heuristics.

Note that the original EFSM to FSM conversion technique implemented should
be replaced by the application of the inconsistency elimination algorithms im-
plemented in INDEEL (see Section 7.2). Using INDEEL to eliminate incon-
sistencies results in a conflict-free EFSM that is significantly smaller than the
FSM.

7.1.2 rcpt

The FSM produced by efsm2fsm is then fed to rept, which builds a corre-
sponding directed graph representation GG. Then, network flow techniques are
applied to find a rural symmetric augmentation of G as G" . Finally, rept finds
an Euler tour of G", and outputs to a file a resulting test sequence conforming
to the CECOM’s proprietary format.

Suppose that protocol.fsm is an input file containing a protocol’s FSM. Then
the following command runs the package:

rept [-cecom/-plain | protocol.fsm output_file

where plain option refers to a plain input/output file format. protocol.fsm
file in plain format can be prepared manually. The cecom option selects test
generation in the CECOM format. In this case, the input file protocol.fsm
should be generated by the efsm2fsm package. The tests are stored in the
number of files named protocol.i, where 7 is the index of a test group.

7.2 INDEEL: Software for Inconsistency Detection and Elimination

Feasible test sequence generation is essential for assuring the proper operation
and interoperability of different components in computer and communication
systems. The use of formal description languages such as VHDL and Estelle
enable the precise description of such systems to minimize the implementation
errors due to misinterpretations. However, the specifications written in VHDL
and Estelle are often extended finite-state machines (EFSMs), making the
automated test generation a more complex task due to the inconsistencies

among the action and condition variables [19].

Within ATIRP, we studied the problem of generating feasible test sequences
for the EFSM by analyzing the interdependencies among the action and con-
dition variables of the EFSM models. In the earlier phases of this research,
action and condition inconsistencies in the EFSM models were defined [75,76].
It has been shown that once the inconsistencies are eliminated, the existing
finite-state machine (FSM)-based test generation methods can be used to gen-
erate feasible test sequences from the resulting consistent EFSM graphs.

The basic concepts for the inconsistency elimination algorithms were outlined
in [76], which were later were generalized to include graphs with loops [71]. The
formal descriptions of the inconsistency detection and elimination algorithms
have been given in [19].

A software package, called INDEEL (INconsistencies DEtection and ELimina-
tion), has been implemented at CCNY based on the inconsistency elimination
algorithms. As part of the ongoing collaboration between the CCNY and the
UD, the application of these algorithms was extended to generate test se-
quences for the protocols with conflicting timers such as 188-220.

INDEEL contains 13,000+ lines of C code. As its input, the software reads
a user specified file containing the description of an EFSM graph with the
following properties:

e The specification consists of a single process and thus there are no commu-
nicating EFSMs.

e If the specification contains function calls, they can be described within the
process with a simple transformation.

e Pointers, recursive functions, and syntactically endless loops are assumed
not to be present in the specification.

e All conditions and actions are linear.

INDEEL uses an iterative approach: every time an action or condition incon-
sistency is detected and eliminated, an intermediate output graph is generated
in a file, using the same format as in the input file. This intermediate output
file then becomes the new input file to INDEEL for continued analysis. This
iterative procedure is repeated until the graph becomes free of inconsistencies.
The intermediate and the final output graphs are provided as files.

INDEEL starts its analysis by considering the action inconsistencies; it then
proceeds to the detection and elimination of the condition inconsistencies (if
any). During the analysis of the action inconsistencies, INDEEL constructs
a set of Action Update Matriz (AUM) pairs for each node. The AUM pairs
represent the effects of the actions of the traversed edges leading to a given
node v;. Similarly, the accumulated different conditions of the paths leading to

v; can be represented as a set of Accumulated Condition Matriz (ACM) triplets
containing the coefficients, operators, and constants of the edge conditions.

To reduce the space complexity, during the AUM and ACM constructions, the
software uses a single matrix called path_matrices in which the numbers of
the edges in the paths from the initial node to v; are stored.

INDEEL implements a two-phase modified breadth-first graph traversal, called
P1-MBF and P2-MBF, to handle the detection of the action inconsistencies.
P1-MBF is the main graph traversal from which P2-MBF may be invoked
multiple times. During the condition inconsistency detection phase, the graph
is traversed in a regular depth-first (DF) manner.

The software: efsm2fsm-rept, and (2) INDEEL were used to help generate tests
for 188-220 that have been delivered to CECOM. This technology transfer is
described in the next section.

8 ATIRP to CECOM Technology Transfer Results

Using research results from Section 6, and software as described in Section 7.2,
UD and CCNY collaborated with CECOM to generate tests for the SAP com-
ponents of 188-220’s Data Link Layer Class A. Class A stations implement
Type 1 (Unacknowledged and Coupled Acknowledged Datalink Connection-
less) Service, with the original EFSM consisting of 1 state and 15 transitions.
Based on the Class A SAP functionalities, the original EFSM was divided into
three EFSMs modeling: (1) general behavior of the SAP component interact-
ing with two destinations, (2) datalink precedence, and (3) an IUT’s behavior
when interacting with up to sixteen destinations. Since the total number of
states/transitions that would be obtained after full expansion to a pure FSM
was infeasibly large, each of the three EF'SMs was expanded to a form closer
to a pure FSM, but still containing some extensions.

To avoid state explosion problem, each expanded EFSM focused on certain
protocol functionalities while restricting others. For example, in 188-220, a
sender can interact with up to sixteen destinations, each of which may be free
or busy. In general behavior tests, destinations are allowed to transit between
free or busy mode, but the sender is restricted to communicate with at most
two of them. In multidestination tests, the sender communicates with up to
sixteen destinations, which are forced to remain in free mode at all times.

Each expanded EFSM was then used in automated test generation. Table 3
shows the sizes of the expanded EFSMs and the tests that were generated from
them. For example, the precedence tests set for Class A—Type 1 Service was

Table 3
188-220 Datalink tests. A single step corresponds to one input/output exchange.

Test set # of states # of transitions # of test steps

Class A Type 1 service

general behavior 298 799 1732
precedence 303 401 1316
multidestination 112 119 145

Class C Type 1 service

general behavior 298 799 1732
precedence 193 357 1314
multidestination 112 119 145

Class C Type 4 service

general behavior 235 925 2803
outstanding frames 48 172 264
multidestination 112 119 145

based on an expanded EFSM of 303 states and 401 transitions. The minimum-
length test sequence generated for this machine consists of 1,316 input/output
pairs covering every transition in the expanded EFSM at least once.

In 1997, these Class A tests were delivered to CECOM for use in its 188-220
testing facility. Figure 16 shows a sample of the delivered test scripts. The
figure depicts the test group #92 from Datalink Class A—Type 1 service tests.
Each test group is a subsequence of a full test sequence that starts and ends
in the initial state. In the first step, the technique of utilizing semicontrollable
interfaces presented in Section 6.2 is used. The lower tester sends a packet
with three destination addresses: IUT addr, des_addr_1, and des_addr_2. The
setting Relay=Yes in the INTRANET clause tells the first addressee, i.e., the
IUT, to relay the packet to the two remaining addressees. As a result, the ITUT
sends a packet with its address as a source, and des_addr_1 and des_addr_2 as
destinations, as if it were originated by the IUT’s Intranet Layer. In the sec-
ond and third steps, the IUT’s packet sent in the first step is acknowledged by
des_addr_2 and des_addr_1, respectively. Each test step is further annotated
with the test description, the number of the corresponding Estelle transi-
tion(s), and the appropriate section(s) from the 188-220 official document.

In 1998, the work on test generation expanded to include Class C. Class C
also allows Type 1 Service as in Class A, but it additionally defines Type 4
(Decoupled Acknowledged Connectionless) Service. As in the case of Class A,
three EFSMs were used to generate three sets of tests for each Class C service.

I Test Group #92
il

TESTGROUP=92;
LAYER=Datalink;

Il Test 1

STIMULUS=send:; // PL-Unitdata.Ind

TIME=long;
/IDLL

INTRANET={

Type=IP;

LowDelay=Yes;

HighThroughput=No;

HighReliability=No;

Precedence=1; // PRIORITY

OrgAddr=des_addr_17;

DestRelay={

Addr=IUT_addr;

Distance=1,

Des=No;

Relay=Yes;

Ack=No;

k

DestRelay={
Addr=des_addr_1;
Distance=2;
Des=Yes;
Relay=No;
Ack=No;

h

DestRelay={
Addr=des_addr_2;
Distance=2;
Des=Yes;
Relay=No;
Ack=No;

k

DATALINK={
CtrIField={
SendSeq=1;
RecSeq-=1;
ControlSpare=1;
DLPrec=1; // PRIORITY
IDNum=1;
PDU=ui_0;
I}
Command=Yes;
SrcAddr=des_addr_17;
DestAddr=IUT_addr;
h

RESULTS-=receive; // PL-Unitdata.Req

TIME=normal;
/I DL1
DATALINK={
CtrlField={
SendSeq=1;
RecSeq=1;
ControlSpare=1;
DLPrec=1; // PRIORITY
IDNum=1;
PDU=ui_1;
k
Command=Yes;
SrcAddr=IUT_addr;

Y

DestAddr=des_addr_1;des_addr_2;

TESTDESCRIPTION=(
Intranet layer passes down a multidestination packet
which is queued by datalink layer. Packet requires
a coupled ack. There are no outstanding frames.
No outstanding frame. Queued frame transmitted to multiple
destinations. Frame requires a coupled ack. Ack timer
started.

I éSTELLE TYPE1SAP_3,4, TYPEISAP_18
/' SECTION(S) 5.3.16_5.3.6.1.1_C4.35.3.4.2.2.2.1 536.1.1

Il Test 2

STIMULUS=send; // PL-Unitdata.Ind
TIME=normal;
/I DL1
DATALINK={
CtrIField={
SendSeq=1;
RecSeg=1;
ControlSpare=1;
DLPrec=2; // ROUTINE
IDNum=1;
PDU=urr_0;
h
Command=No;
SrcAddr=des_addr_2;
DestAddr=IUT _addr;
b
RESULTS=noop; // none

TESTDESCRIPTION={
Second destination acks a multidestination packet.
First has not acked yet.

2
//ESTELLE TYPELSAP_12
/| SECTION(S) 5.3.7.1.5.5 5.3.6.1.6_C4.3

Il Test 3

STIMULUS=send; // PL-Unitdata.Ind
TIME=normal;
/IDL1
DATALINK={
CtrIField={
SendSeq=1;
RecSeq=1;
ControlSpare=1;
DLPrec=2; // ROUTINE
IDNum=1;
PDU=urr_0;
k
Command=No;
SrcAddr=des_addr_1;
DestAddr=IUT_addr;

h
RESULTS=noop; // none
TESTDESCRIPTION={
First destination acks a packet. Ack timer is stopped.

No frame queued for transmission.

k
IESTELLE TYPE1SAP_12
/I SECTION(S) 5.3.7.15.5_5.3.6.1.6_C4.3

Fig. 16. A sample of test scripts delivered to CECOM.

The sizes of the EFSMs and the corresponding minimum-length tests are
shown in Table 3. For example, the general behavior tests set for Class C
Type 4 Service was based on an EFSM of 235 states and 925 transitions. The
minimum-length test sequence generated for this machine consists of 2,803
input/output pairs. These tests have been delivered to CECOM.

In the final phase of ATIRP, we have been investigating test generation for
188-220 Class B which includes Types 1,3, and 2 service. Class B is much more
complex than Classes A and C, and involves generating problems for reliable
connection-oriented service test case generation.

The implementations of 188-220 from several manufacturers are being tested
at CECOM. The tests generated by the UD and CCNY team have uncov-
ered several implementation errors, including lack of mandatory capabilities
in Datalink layer, and problems with multi-hop Intranet Relaying.

9 Conclusions: Improvements to Protocol Development Process

9.1 Integration of Estelle into System Development

Traditional sequential process of system development is known to be ineffi-
cient since it allows unnecessary duplication and does not facilitate tracking
of rapidly changing technology. With 188-220 as a critical component, a syner-
gistic framework for C*I (Command, Control, Communications, Computers,
and Intelligence) systems development has been established [20] (Figure 17). It
combines several parallel activities: developing protocol standards and speci-
fications, formally specifying protocols in Estelle, building conformance tester
hardware and software, “field testing”, modeling and simulation, as well as
resolving and documenting the solutions to standards-related technical issues
by the Joint CNR Working Group. (WG participants include representatives
from DoD services/agencies, industry, and academia.)

Using formal methods as part of this process helped create a high quality
protocol standard, which is robust and efficient. Due to the structured nature
of Estelle, the specification process progressed at an accelerated pace compared
to the other standards. 188-220 was completed on time, setting a rare example
in the protocol standards arena.

Since it is relatively easier to extract modeling information from a formal
specification, the researchers at UD and CCNY were able to solve a num-
ber of theoretical problems, which resulted in the development of new test-
ing methodologies. By applying these new results, the conformance tests for

Joint CNR
/ Working Group \

Modeling & Standards &

Simulation

Protocols

-—
C4l Systems
Development Identify and
remove
/ \ ambiguities
Protocol *) > Estelle Formal
Test Design & generate Specificati
ester test scripts pecification

Fig. 17. Estelle as part of synergistic efforts to develop C*I systems.

188-220 were generated while the protocol was still evolving. Performing ini-
tial conformance tests on prototypes uncovered several interoperability errors
early in the development process. Following this success of the 188-220 devel-
opment, the synergistic efforts to develop C*I systems with the help of formal
methods serves as a model for DoD standards process and development for
the future [20].

9.2 Advantages of Formal Methods in Eliminating Protocol Errors

The difficulties of describing protocol operations with clarity, precision, and
consistency by using a natural language are illustrated by the examples in
Section 5.2. In addition to the vagueness introduced by a natural language
description, ambiguities and contradictions are difficult to detect when related
protocol functionalities are defined in different document sections separated
by several pages of unrelated text. Such problems are eliminated in a formal
Estelle specification. All actions in a particular context are defined in one place
within the Estelle specification. The specifications make the conditions for
state transitions explicit through Estelle constructs. Indeed, the very process
of creating these constructs enables formal specifiers to detect some of these
types of ambiguities which are difficult to see in normal reading of a document
written in English.

9.3 Observations on Applicability of Formal Methods

As concluding remarks for this paper, we report the following observations
based on our experience during the formal specification and test generation

for 188-220.

To develop an Estelle formal specification of a protocol, we must not only
define its architecture and interface components (e.g., as in Figures 4 and 5
for 188-220), but we must also carefully specify the behavior of each module of
these components. This definition, achieved through the creation of EFSMs, is
the most difficult and time-consuming step of creating a formal specification. A
syntax-directed editor improves the readability for testers who are not FDT-
trained; it also is useful in writing non-trivial specifications. Moreover, the
modeling and specification languages, such as SDL [29,30] and UML [54], enjoy
widespread industrial popularity, partially due to their standard graphical
representation. Therefore, it will be a natural extension for Estelle to include
a graphical editor [60]. Once all states and transitions of a protocol (including
inputs and outputs) are finalized, the writing of the Estelle code itself is fast
and straightforward.

Since 188-220 is a multilayer, multifunction protocol of a considerable size and
complexity, manual generation of conformance test sequences would be both
inefficient and ineffective. As seen from Table 3, the tests already delivered
to CECOM contain approximately 10,000 test steps. It is clear that manually
generating test sets of this size from the protocol textual description is not a
trivial task.

A number of conformance test generation techniques have been proposed
[1,7,9,50,57,59,63,66], each of which is expected to give better results for a cer-
tain class of protocol specifications depending on the nature and size of the pro-
tocol. The experience obtained in generating tests for 188-220 suggests that to
successfully test today’s complex protocols by using formal methods, an ideal
test generation tool should support multiple test generation techniques [45].
They can range from Postman tours [1] or fault-oriented tests [78,80] for mid-
size protocols when the number of states ranges on the order of thousands, to
guided random walk approaches [43,81] for larger protocols when the number
of states ranges in the tens of thousands.

The state explosion problem has been a major issue for generating FSM models
out of EFSM representations of protocols [15,56,79,80]. One common proce-
dure for converting EFSMs into FSMs simultaneously performs reachability
analysis and online minimization [15,44]; this conversion is based on combin-
ing equivalent states [58| using bisimulation equivalence [51]. Another approach
proposes the elimination of inconsistencies in EFSM models [69,70]. Efficient
algorithms such as these should be implemented in any test generation tool
using FSM models. If the final FSM model is not confined to a manageable
size, the test sequences generated from it will be infeasibly long regardless of
the test generation method.

Finally, a test house may require its own proprietary format for the executable
tests. Although TTCN is accepted as input by many test tools, a proprietary
test format may be preferable for a given protocol if this format is more
readable by testers, or is simpler to parse by software tools. The output of a
test generation tool should be easily custom-tailored for a particular format,
possibly by using simple application generators.

10 Acknowledgments

The authors thank Samuel Chamberlain of ARL; Ted Dzik and Ray Menell
of CECOM; and Mike McMahon and Brian Kind of ARINC, Inc. for their
collaboration in this research.

References

[1] A.V. Aho, A. T. Dahbura, D. Lee, and M. U. Uyar. An optimization technique
for protocol conformance test generation based on UIO sequences and rural
Chinese postman tours. IEEE Trans. Commun., 39(11):1604-1615, Nov. 1991.

2] P. D. Amer, G. Burch, A. S. Sethi, D. Zhu, T. Dzik, R. Menell, and
M. McMahon. Estelle specification of MIL-STD 188-220A DLL. Proc. IEEFE
MILCOM, Oct. 1996.

[3] P. D. Amer, M. A. Fecko, A. S. Sethi, M. U. Uyar, T. J. Dzik, R. Menell, and
M. McMahon. Using Estelle to evolve MIL-STD 188-220. In Budkowski et al.
[12], 55 58.

[4] B. Baumgarten, H.-J. Burkhardt, and A. Giessler, editors. Proc. IFIP Int’l
Workshop Test. Communicat. Syst. (IWTCS), Darmstadt, Germany, Sept.
1996. Boston, MA: Kluwer Academic Publishers.

[6] A. Bhattacharyya. Checking Ezperiments in Sequential Machines. Wiley &
Sons, New York, NY, 1989.

[6] J. Biand J. Wu. Application of a TTCN-based conformance test environment
to the Internet email protocol. In Kim et al. [41], 324-330.

[7] B. S. Bosik and M. U. Uyar. FSM-based formal methods in protocol
conformance testing: from theory to implementation. Comput. Networks &
ISDN Syst., 22(1):7-34, Sept. 1991.

[8] J. Bredereke and R. Gotzhein. Specification, detection, and resolution of IN
feature interactions with Estelle. Proc. IFIP Formal Desc. Tech. (FORTE),
376-378. Chapman & Hall, 1995.

[9] E. Brinksma. A theory for the derivation of tests. Proc. IFIP Protocol Specif.,
Test., & Verif. (PSTV). Amsterdam: North-Holland, 1988.

[10] S. Budkowski, A. Cavalli, and E. Najm, editors. Proc. IFIP Joint Int’l Conf.
FORTE/PSTYV, Paris, France, Nov. 1998. Boston, MA: Kluwer Academic
Publishers.

[11] S. Budkowski and P. Dembinski. An introduction to Estelle: A specification
language for distributed systems. Comput. Networks & ISDN Syst., 14(1):3-24,
1991.

[12] S. Budkowski, S. Fischer, and R. Gotzhein, editors. Proc. Int’l Workshop
FDT FEstelle, Evry, France, Nov. 1998. Evry, France: Institut National des
Télécommunications (INT).

[13] R. Burch, P. Amer, and S. Chamberlain. Performance evaluation of MIL-
STD 188-220A: Interoperability standard for digital message transfer device
subsystems. Proc. IEEE MILCOM, San Diego, CA, Nov. 1995.

[14] O. Catrina, E. Lallet, and S. Budkowski. Automated implementation of the
Xpress Transport Protocol (XTP) from an Estelle specification. FElectronic J.
Networks & Distrib. Process., (7):3-19, Dec. 1998.

[15] K. T. Cheng and A. S. Krishnakumar. Automatic generation of functional
vectors using the extended finite state machine model. ACM Trans. Design
Automation of Electronic Syst., 1(1):57-79, Jan. 1996.

[16] S.-K. Cheong, K.-H. Lee, and T.-W. Jeong. The analysis of integrating test
results for ATM switching systems. In Baumgarten et al. [4], 83-89.

[17] J. Y. Choi and B. K. Hong. Generation of conformance test suites for B-ISDN
signalling relevant to multi-party testing architecture. In Baumgarten et al. [4],
316-330.

[18] DoD. Military Standard—Interoperability Standard for Digital Message Device
Subsystems (MIL-STD 188-220B), Jan. 1998.

[19] A. Duale and U. Uyar, Generation of feasible test sequences for EFSM models.
In H. Ural, R. Probert, and G. v. Bochmann, eds, Proc. IFIP Int’l Conf. Testing
o Communicating Systems, TestCom, Ottawa, Sept. 2000, 91-109.

[20] T. Dzik and M. McMahon. MIL-STD 188-220A evolution: A model for technical
architecture standards development. Proc. IEEE MILCOM, Monterey, CA,
Nov. 1997.

[21] M. A. Fecko, P. D. Amer, A. S. Sethi, M. U. Uyar, T. Dzik, R. Menell, and
M. McMahon. Formal design and testing of MIL-STD 188-220A based on
Estelle. Proc. IEEE MILCOM, Monterey, CA, Nov. 1997.

[22] M. A. Fecko, M. U. Uyar, P. D. Amer, and A. S. Sethi. Using semicontrollable
interfaces in testing Army communications protocols: Application to MIL-STD
188-220B. Proc. IEEE MILCOM, Atlantic City, NJ, Oct. 1999.

[23] M. A. Fecko, M. U. Uyar, A. S. Sethi, and P. D. Amer. Issues in conformance
testing: Multiple semicontrollable interfaces. In Budkowski et al. [10], 111-126.

[24] M. A. Fecko, M. U. Uyar, A. S. Sethi, and P. D. Amer. Conformance testing in
systems with semicontrollable interfaces. Annals of Telecommun., 55(1):70-83,
Jan. 2000.

[25] M. A. Fecko. Timing and control issues in conformance testing of protocols
PhD Dissertation, CISC Dept., Univ. of Delaware, 1999.

[26] M. A. Fecko, M. U. Uyar, A. Y. Duale, and P. D. Amer. Test generation in the
presence of conflicting timers. In H. Ural, R. Probert, and G. v. Bochmann, eds,
Proc. IFIP Int’l Conf. Testing o Communicating Systems, TestCom, Ottawa,
Sept. 2000.

[27] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state models. IEEE Trans. Software Eng., 17(6):591—
603, Jun. 1991

[28] R. Gecse. Conformance testing methodology of Internet protocols: Internet
application-layer protocol testing—HTTP. In Petrenko and Yevtushenko [55],
35-48.

[29] D. Hogrefe. Validation of SDL systems. Comput. Networks & ISDN Syst.,
28(12), 1996.

[30] Int’l Telecomm. Union, Geneva, Switzerland. ITU Recommendation Z100:
Specification and Description Language (SDL), 1989.

[31] ISO, Information Processing Systems—OSI, Geneva, Switzerland. ISO/IEC
International Standard 8571-1: File Transfer, Access and Management—Part
1: General introduction, 1988.

[32] ISO, Information Processing Systems—OSI. ISO International Standard
907): Estelle—A Formal Description Technique Based on an Extended State
Transition Model, 1989.

[33] ISO, Information Technology—OSI, Geneva, Switzerland. ISO/IEC
International Standard 13712-3: Remote Operations: OSI realizations—Remote
Operations Service Element (ROSE) protocol specification, 1995.

[34] ISO, Information Technology—OSI, Geneva, Switzerland. ISO/IEC
International Standard 8327-1: Connection-oriented Session Protocol—protocol
specification, 1996.

[35] ISO, Information Technology—OSI, Geneva, Switzerland. ISO/IEC
International Standard 10026-3: Distributed Transaction Processing—Part 3:
Protocol specification, 1998.

[36] ISO/IEC. International Standard ISO/IEC 8802-2, ANSI/IEEE Std. 802.2,
2nd edition, Dec. 1994.

[37] ITU. Recommendation Q.2110: Service Specific Connection-Oriented Protocol
(SSCOP).

[38] A. Jirachiefpattana and R. Lai. Uncovering ISO ROSE protocol errors using
Estelle. Comput. Stand. & Interf., 17(5-6):559-583, 1995.

[39] S. Kang, Y. Seo, D. Kang, M. Hong, J. Yang, I. Koh, J. Shin, S. Yoo,
and M. Kim. Development and application of ATM protocol conformance
test system. Proc. IFIP Int’l Workshop Test. Communicat. Syst. (IWTCS),
Budapest, Hungary, Sept. 1999.

[40] T. Kato, T. Ogishi, A. Idoue, and K. Suzuki. Intelligent protocol analyzer with
TCP behavior emulation for interoperability testing of TCP/IP protocols. Proc.
IFIP Joint Int’l Conf. FORTE/PSTYV, 449-464, Osaka, Japan, Nov. 1997.

[41] M. Kim, S. Kang, and K. Hong, editors. Proc. IFIP Int’l Workshop Test.
Communicat. Syst. (IWTCS), Cheju Island, Korea, Sept. 1997. Boston, MA.

[42] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New York,
NY, 1978.

[43] D. Lee, K. K. Sabnani, D. M. Kristol, and S. Paul. Conformance testing of
protocols specified as communicating FSMs—a guided random walk approach.
IEEE Trans. Commun., 44(5), May 1996.

[44] D. Lee and M. Yannakakis. Online minimization of transition systems. Proc.
24th Annual ACM, Victoria, Canada, 1992.

[45] D. Lee and M. Yannakakis. Principles and methods of testing finite state
machines—a survey. Proc. IEEE, 84(8):1090-1123, Aug. 1996.

[46] D. Y. Lee and J. Y. Lee. Test generation for the specification written in Estelle.
Proc. IFIP Protocol Specif., Test., & Verif. (PSTV), Stockholm, Sweden, June
1991.

[47] D. Y. Lee and J. Y. Lee. A well-defined Estelle specification for the automatic
test generation. IEEE Trans. Comput., 40(4), Apr. 1991.

[48] J. K. Lenstra and A. H. G. Rinnooy Kan. On general routing problems.
Networks, 6:273-280, 1976.

[49] H. Li, P. Amer, and S. Chamberlain. Estelle specification of MIL-STD 188-
220A: Interoperability standard for digital message transfer device subsystems.
Proc. IEEE MILCOM, San Diego, CA, Nov. 1995.

[50] R. E. Miller and S. Paul. On the generation of minimal-length conformance
tests for communication protocols. IEEE/ACM Trans. Networking, 2(1):116—
129, Feb. 1993.

[61] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs,
NJ, 1989.

[52] P. Mondain-Monval. ISO Session Service specification in Estelle. Technical
Report SEDOS Rep. 70, ESPRIT Project, Nov. 1986.

[53] C. Negulescu and E. Borcoci. SSCOP protocol throughput evaluation—
simulation based on Estelle specification. In Budkowski et al. [12], 75-98.

[64] Object Management Group, Framingham, MA. OMG Standard: Unified
Modeling Language (UML) 1.1, 1997.

[55] A. Petrenko and N. Yevtushenko, editors. Proc. IFIP Int’l Workshop Test.
Communicat. Syst. (IWTCS), Tomsk, Russia, Sept. 1998. Boston, MA: Kluwer
Academic Publishers.

[56] D. H. Pitt and D. Freestone. The derivation of conformance tests from LOTOS
specifications. IEEE Trans. Softw. Eng., 16(12):1337-1343, 1990.

[67] J. Romijn and J. Springintveld. Exploiting symmetry in protocol testing. In
Budkowski et al. [10], 337-351.

[68] K. K. Sabnani and A. T. Dahbura. A protocol test generation procedure.
Comput. Networks & ISDN Syst., 15:285-297, 1988.

[59] B. Sarikaya, G. von Bochmann, and E. Cerny. A test design methodology for
protocol testing. IEEE Trans. Softw. Eng., 13(5):518-531, May 1987.

[60] J. Templemore-Finlayson, J 1. Raffy, P. Kritzinger, and S. Budkowski. A
graphical representation and prototype editor for the formal description
technique Estelle. In Budkowski et al. [10], 37-55.

[61] R. Tenney. A tutorial introduction to Estelle. Technical Report 88-1, Univ. of
Mass, Boston, June 1988.

[62] J. Thees. Protocol implementation with Estelle—from prototypes to efficient
implementations. In Budkowski et al. [12], 187-193.

[63] J. Tretmans. Conformance testing with labelled transitions systems:
Implementation relations and test generation. Comput. Networks & ISDN Syst.,
29(1):49-79, 1996.

[64] K. Turner. Formal Description Techniques. North-Holland, Amsterdam, 1989.

[65] H. Ural and B. Yang. A test sequence selection method for protocols specified
in Estelle. Technical Report TR-88-18, Univ. of Ottawa, June 1988.

[66] H. Ural and B. Yang. A test sequence selection method for protocol testing.
IEEE Trans. Commun., 39(4), 1991.

[67] H. Ural. Formal methods for test sequence generation. Computer
Communications, 15(5):311-325, Jun. 1992.

[68] M. U. Uyar and A. T. Dahbura. Optimal test sequence generation for protocols:
the Chinese postman algorithm applied to Q.931. Proc. IEEE GLOBECOM,
68-72, Dec. 1986.

[69] M. U. Uyar and A. Y. Duale. Modeling VHDL specifications as consistent
EFSMs. Proc. IEEE MILCOM, Monterey, CA, Nov. 1997.

[70] M. U. Uyar and A. Y. Duale. Removal of inconsistencies in VHDL specifications.
Proc. US Army Research Lab ATIRP Conf., College Park, MD, Feb. 1998.

[71] M. U. Uyar and A. Y. Duale. Conformance tests for Army communication
protocols. Proc. US Army Research Lab ATIRP Conf., College Park, MD,
Mar. 2000.

[72] M. U. Uyar, M. A. Fecko, A. S. Sethi, and P. D. Amer. Minimum-cost solutions
for testing protocols with timers. Proc. IEEE Int’l Performance, Comput., &
Commun. Conf. (IPCCC), 346-354, Phoenix, AZ, Feb. 1998.

[73] M. U. Uyar, M. A. Fecko, A. S. Sethi, and P. D. Amer. Testing protocols
modeled as FSMs with timing parameters. Comput. Networks, 31(18):1967—
1988, Sept. 1999.

[74] M. U. Uyar and M. H. Sherif. Protocol modeling for conformance testing: Case
study for the ISDN LAPD protocol. AT& T Technical J., 69(1), Jan. 1990.

[75] M. U. Uyar and A. Y. Duale, “Modeling VHDL Specifications as Consistent
EFSMs,” Proc. IEEE MILCOM, Monterey, CA, Oct. 1997, 740-744.

[76] M. U. Uyar and A. Y. Duale. Resolving inconsistencies in VHDL Specifications.
Proc. IEEE MILCOM, Atlantic City, NJ, Oct. 1999, No. 5.1.3.

[77] E. Vazquez, P. Sandoval, M. Sedano, and J. Vinyes. Automatic implementation
of TP4/IP with an Estelle workstation—development methodology and
performance evaluation. Proc. IFIP Protocol Specif., Test., & Verif. (PSTV),
125-139. Amsterdam: North-Holland, 1992.

[78] G. von Bochmann, A. Das, R. Dssouli, M. Dubuc, A. Ghedamsi, and G. Luo.
Fault models in testing. Proc. IFIP Int’l Workshop Protocol Test Syst.
(IWPTS), 17-30. Amsterdam: North-Holland, 1992.

[79] C. J. Wang and M. T. Liu. Axiomatic test sequence generation for extended
finite state machines. Proc. 12th Conf. Distrib. Comput. Syst., 252-259, 1992.

[80] C. J. Wang and M. T. Liu. Generating test cases for EFSM with given fault
models. Proc. IEEE INFOCOM, 774-781, 1993.

[81] C. West. Protocol validation by random state exploration. Proc. IFIP Protocol
Specif., Test., & Verif. (PSTV). Amsterdam: North-Holland, 1986.

[82] J. Wytrebowicz and P. Roliniski. Analysis tools for Estelle specifications. In
Budkowski et al. [12], 141-155.

[83] XTP Forum, Santa Barbara, CA. Xpress Transport Protocol Specification, Rev.
4.0, 1995.

[84] S. Yoo, L. Collica, and M. Kim. Conformance testing of ATM Adaptation Layer
protocol. In Baumgarten et al. [4], 237-252.

