
Proc. 3rd International Conference on Internet Computing, Las Vegas, NV (June 2002), pp. 201-208.

Fair and Scalable Load Distribution in the Internet

Vasil Hnatyshin and Adarshpal S. Sethi
Department of Computer and Information Sciences,

University of Delaware, Newark, DE 19716

ABSTRACT

The current best effort approach to quali ty of service (QoS)
in the Internet can no longer satisfy a diverse variety of cus-
tomer service requirements, and that is why there is a need
for alternative strategies. We believe that the Internet needs
means for providing a fine-grained per-flow QoS that does
not cause network congestion and keeps overall l ink utiliza-
tion high. In this paper we introduce an efficient, fast and
scalable load distribution mechanism, which fairly distributes
available resources among the flows based on their resource
requirements. The load distribution scheme (LDS) is imple-
mented via a message exchange protocol which maintains
high link util ization while incurring low overhead. We study
the LDS and compare two fairness mechanisms introduced
within the LDS framework using simulations in OPNET.

Keywords: Quality of service, dynamic admission control, load
distribution, network feedback, fair rate distribution

1. Introduction.
The “one service for all” model used by the current

Internet can no longer satisfy the multitude of customer
requirements. We believe that the Internet needs is a scal-
able mechanism for providing a fine-grained per-flow
quali ty of service that does not cause congestion in the
network and keeps overall utili zation of the links high. In
author’s opinion, one of the best ways to achieve this goal
is to introduce a load distribution scheme (LDS) at the
network boundaries. Such a scheme would require the
ingress nodes to limit sending rates of the flows based on
the congestion level in the network.

In this paper we introduce a fast, eff icient, and scalable
load distribution mechanism that fairly distributes avail-
able resources among the flows based on their resource
requirements. The LDS is based on the idea that during
congestion, an overloaded interface notifies the ingress
nodes that contribute to the congestion asking them to
reduce transmission rates of the flows. Upon receiving
congestion notification message, the ingress router com-
putes its new share of the bandwidth on the overloaded
interface and distributes it among individual flows. The
proposed LDS guarantees that each flow receives at least
its minimum requested amount of bandwidth, while any
additional resources are shared among all flows in a fair
manner. The LDS admits a new flow into the network
only if there is enough resources to satisfy the flow’s re-

quest. The LDS is implemented using a message ex-
change protocol that retains high link util ization and in-
curs low overhead.

The LDS is most beneficial to applications that can tol-
erate variation of their transmission rate while stil l provid-
ing the end-user with an adequate level of service quali ty.
FTP is an example of such an application; it tolerates
variation in the downloading speed but can use as much
bandwidth as the network can provide. Multimedia appli-
cations can also benefit from the LDS. Such applications
cannot operate below certain transmission rates because
the quali ty of the picture or sound becomes unrecogniz-
able; however, they can tolerate variation of the allocated
bandwidth as long as the quali ty of arriving data is ac-
ceptable to the receiver.

The rest of this paper is organized as follows. Section 2
introduces definitions of fairness, while section 3 de-
scribes the message exchange protocol used in the LDS.
Section 4 presents simulation results and in Section 5 we
discuss scalabili ty issues and examine the problem of
providing per-flow QoS within the LDS framework. Sec-
tion 6 provides an overview of the related. Finally, we
conclude in Section 7 with possible future directions.

2. Fairness Definitions
In order to determine a permissible sending rate of a

flow, each boundary node maintains a Requested Load
Range, RLR = (bf, Bf), for the flows that enter the network
domain through it. A flow’s RLR consists of two values: a
minimum rate, bf, below which the flow cannot operate
normally and the maximum rate, Bf, that the flow can util-
ize. The flow’s sending rate, Rf, is limited by its RLR and
lies within this requested range. Throughout the paper we
wil l often refer to numerous definitions of the RLR ag-
gregates. To avoid potential confusion we define these
aggregates as follows.

In addition to the flow RLRs, each ingress node keeps
track of the path RLRs. The path RLR, (bi

P, Bi
P), or the

RLR of the ingress node i on the path P is a load range
where bi

P corresponds to the sum of the minimum re-
quested rates of the flows that originate from the ingress
node i and traverse the path P, while Bi

P is the sum of the
corresponding requested maximum rates. Using f →P to
denote that flow f traverses path P, we define the path
RLR as follows:

∑
→

=
Pf

fP
i bb ∑

→

=
Pf

fP
i BB

(1)

Similarly, we define interface and aggregated interface
RLRs for the core router interfaces. The interface RLR of
interface k for the ingress node i, (bi

k, Bi
k), is the sum of

the path RLRs of the ingress node i, subject to the condi-
tion that the paths include interface k.
 ∑

∈

=
Pk

P
i

k
i bb ∑

∈

=
Pk

P
i

k
i BB (2)

To avoid confusion, we wil l use an upper-case letter
(e.g. P) for a path and a lower-case letter (e.g. k) for an
interface. Finally, the aggregated interface RLR of inter-
face k, (bk, Bk), is the sum of its interface RLRs.
 ∑=

i

k
i

k bb ∑=
i

k
i

k BB (3)

Ingress nodes obtain the flow RLRs from the service
level agreements established with the user, and they com-
pute the path RLRs based on these values. Each core in-
terface obtains interface RLRs from the ingress node’s
advertisements and computes an aggregated interface
RLR. Ingress nodes maintain information about individual
flows (e.g. flow’s RLR) and their corresponding paths
(e.g. path RLRs), while the core routers maintain only
per-ingress node information (e.g. interface RLRs). A
more detailed overview of the data structures maintained
in the ingress and core nodes is provided in [4].

Congestion notification messages carry interface and
aggregated interface RLRs. These values allow ingress
nodes to fairly distribute available resource among indi-
vidual flows. In this paper we examine two definitions for
computing an ingress node’s fair share. The first defini-
tion, which we call proportional, computes the fair share,
FSi

k, of the ingress node i proportionally to the minimum
value of its interface RLR on the congested interface k:

() 





=





−+= k

ik

k
ikk

ik

k
ikkk

i
k
i B

b

b
CB

b

b
bCbFS ,min,min (4)

where Ck is the capacity of the outgoing link on interface
k. According to equation (4), each ingress node receives
its share of the interface’s capacity proportionally to its
minimum requested rate on the congested interface. The
fair share of each flow that contributes to the congestion
is computed in a similar way. Furthermore, the fair share
of the flow f, FSf, is also proportional to its minimum re-
quested rate on the congested interface:









= f

k

f
kf B

b

b
CFS ,min (5)

The second definition of fairness computes the fair
share of an ingress node proportionally to the difference
between the maximum and the minimum requested rates,
which is the amount of bandwidth the flow needs to maxi-
mize its performance. We call this fairness definition a
maximizing utility fairness. Thus, the fair share on con-

gested interface k of ingress node i and of flow f is com-
puted as follows:

() 





−
−

−+= k
ikk

k
i

k
ikkk

i
k
i B

bB

bB
bCbFS ,min (6)

() 





−
−−+= f

k
i

k
i

ff
k
i

k
i

ff B
bB

bB
bFSbFS ,min

() 





−
−−+= f

kk

ff
kkf B

bB

bB
bCb ,min (7)

3. The message exchange protocol
The message exchange protocol consists of three dis-

tinct phases. During the first phase, called path probing,
the ingress node attempts to learn about the current state
of a path or to learn the path itself if the route to the
flow’s destination is unknown. The probe messages col-
lect the current arrival rate of the traff ic and the aggre-
gated interface RLR for each traversed link. The probe
messages are generated either periodically or when a new
flow is activated. Periodic probing is used to determine if
the ingress node can increase its sending rate on the path,
while the probing caused by the flow activation deter-
mines if the new flow can be admitted into the network.

Admission of a newly activated flow into the network
or a flow termination initiates the second phase called the
RLR change phase. The purpose of this phase is to update
the interface RLRs along the flow’s path. If the admission
of the new flow causes congestion anywhere along the
path, then the ingress node initiates the third phase, called
the Rate Reduction Phase. During the third phase con-
gested interfaces notify ingress nodes to slow down.

The message exchange protocol uses the following
message types. In the first phase, ingress nodes generate
PROBE packets and receive results of the path probing
via PROBE_REPLY messages. In the second phase, in-
gress nodes advertise changes using RLR_CNG packets.
CN and CN_CORE messages are used during the rate
reduction phase to convey information about congested
interfaces to the ingress and core nodes respectively.

3.1 The Path Probing Phase
The purpose of the path probing is to learn the current

arrival rate and the aggregated interface RLR at each link
on the path of interest. The PROBE messages are gener-
ated by an ingress node either periodically or due to the
activation of a new flow, and are processed by all core
routers on the path to the specified egress node. When a
core router receives a PROBE message, it retrieves infor-
mation about the interface on which the probe message
will depart. This information consists of the IP address of
the interface, estimated total arrival rate, capacity, and an
aggregated interface RLR. The interface information is

stored in the body of the PROBE, and the message itself
is forwarded further along the path. The PROBE_REPLY
message that carries collected path information from the
egress node back to the ingress node does not require any
additional processing by the core routers.

Information collected by the PROBE is used to update
the path state information at the ingress node. Each in-
gress node maintains three tables: a flow table, a path ta-
ble, and an interface table. The flow table contains infor-
mation such as the flow RLR, the current sending rate,
and the destination address of each flow. The path table
contains information about each path that is being trav-
ersed by the traff ic originating from this ingress node. The
path table entry contains the ordered list of the interfaces
that belong to the path and the list of the flows that travel
on this path. Information about each interface of the path
is maintained in the interface table. An interface table
entry contains the IP address of the interface, the total
arrival rate, capacity, and an aggregated interface RLR.

Once the internal tables are updated, the ingress router
examines the cause of the PROBE generation. If it was a
periodic probe, then the ingress node examines the path
information in order to determine if there is excess band-
width available on the path. If the probe was generated
due to flow activation, then the ingress node calculates the
new flow’s permissible rate and initiates the RLR change
phase. Details regarding computation of the available re-
sources on the path and new flow’s rate can be found in
[5]. They were omitted due to space limitations.

3.2 The RLR change phase
The ingress node initiates the RLR change phase upon

flow activation or termination. The RLR_CNG message
generated due to flow activation is always preceded by the
path probing phase, during which the ingress node com-
putes the sending rate of the new flow and determines if
such a rate increase wil l cause congestion anywhere on
the path. An interface k considered to be congested if the
new flow’s rate causes the total arrival rate on the inter-
face to be larger then its capacity: Af + Rk > Ck.

If addition of a new flow causes one or more interfaces
on the path to become congested, the ingress node identi-
fies an interface that will i nitiate the rate reduction proc-
ess. Such interface should satisfy two conditions: it should
be congested and it should be located the smallest number
of hops away from the destination along the flow’s path.
The second condition allows aggregation of congestion
notifications because the rate reduction process works
opposite to the flow of traff ic on the path.

Subsequently, the ingress node generates and forwards
the RLR_CNG message which contains the RLR and the
sending rate of the new flow and the identity of the inter-
face that will i nitiate the rate reduction process. The inter-

face identity field is empty if there is no congestion on the
path or if the RLR_CNG is generated upon flow termina-
tion. When a core router on the flow’s path receives this
message, it updates its interface RLR and the estimated
arrival rate on the outgoing interface. The core router ini-
tiates the rate reduction process if the identity of its outgo-
ing interface is included in the RLR_CNG message.

The RLR change message generated due to flow deacti-
vation causes a decrease of the interface RLR on each
interface of the path. This in turn causes an increase in the
fair share for each ingress node that sends traff ic through
the interface. However, since none of the ingress nodes
knows about the RLR decrease, they continue sending
traff ic at the rate below their new fair share, which may
result in temporary underutil ization. The LDS relies on
the periodic probing instead of explicit advertisement of
available bandwidth to deal with such situation. A flow
may only increase its sending rate if each interface on the
path has excess bandwidth available. This information can
be obtained only by probing the path.

3.3 The Rate Reduction Phase
The Rate Reduction Phase begins when the core router

interface chosen to initiate the rate reduction process re-
ceives the RLR_CNG message. We wil l use k to denote
this interface. The ingress node that requested the RLR
change will be called the initiator. The Rate Reduction
Phase consists of two steps: identifying the ingress nodes
to throttle, and generating congestion notifications.

3.3.1 Identifying ingress nodes to throttle
The core router identifies the set Uk that consists of in-

gress nodes that send traff ic through interface k. The set
Uk is then divided into two subsets Uk

indirect and Uk
direct,

called indirect and direct notification sets, respectively.
Ingress nodes whose traff ic arrives on the same incoming
link to interface k as traffic from the initiator belong to
Uk

indirect, while the remaining ingress nodes belong to the
set Uk

direct= Uk - Uk
indirect.

Figure 1. Selection of the direct and indirect notification sets.

 Figure 1 shows an example of how these sets are being
selected. The initiator A causes congestion on the inter-
face k of the core router C2. The set Uk consists of A, B,
and C, because their traff ic traverses the interface k. The
indirect notification set, Uk

indirect, contains ingress nodes A
and B and the direct notification set, Uk

direct, contains only
ingress node C.

Since initiator may cause congestion on multiple links,
the indirect notification set contains ingress nodes that

Ingress C Ingress B

Congested
interface k

Initiator

Ingress A C1 C2 C3 Egress E

contribute to congestion not only on the current interface
k but possibly on other upstream interfaces. Thus, to avoid
dealing with multiple congestion notifications and to re-
duce the overall number of control messages, the core
routers aggregate information about the ingress nodes that
belong to the indirect notification set. This information is
carried in a CN_CORE message to the upstream nodes.

By contrast, traff ic from ingress nodes that belong to
the direct notification set does not influence the conges-
tion situation upstream but it does contribute to the con-
gestion in the current interface k. Thus, these ingress
nodes are directly notified through the CN message.

3.3.2 Generating congestion notifications
The CN message carries information about the con-

gested interfaces that requested a rate reduction to a single
ingress node in the direct notification set. The CN_CORE
message carries such information to multiple (all) ingress
nodes in the indirect notification set via other upstream
nodes. Both CN and CN_CORE messages carry the fol-
lowing information about the congested interface(s): IP
address, interface and aggregated interface RLRs, and the
capacity. Ingress nodes that receive CN distribute the load
according to the algorithm presented in Appendix A. Up-
stream nodes that receive CN_CORE may need to update
the payload of the forwarded CN_CORE and newly cre-
ated CN messages.

Upstream nodes that receive the CN_CORE message
update notification packets only if the outgoing interface j
corresponding to the link on which the CN_CORE mes-
sage arrived is congested and satisfies one of the follow-
ing rules. The core routers determine congestion status of
the interface j by comparing the link capacity with the
difference between the total arrival rate on the interface j
and the rate reduction requested downstream. For more
details see Appendix B.

Rule 1: If the rate reduction on the congested interface j
is larger than the rate reduction on the downstream inter-
faces, then the information about these downstream inter-
faces is replaced with the data of the interface j.

Rule 2: Otherwise, if the interface RLR on the con-
gested interface j is larger than that on the next-hop
downstream interface, then the information about the in-
terface j is added to the corresponding ingress node entry
in the control messages.

In rule 1, we define the rate reduction on interface j to
be larger than that on interface j’ if for the same RLR val-
ues, the interface j causes larger rate decrease then the
downstream interface j’ . These rules apply to each ingress
node entry separately because individual ingress nodes
may contribute to congestion on different sets of inter-
faces.

4. Simulation Results
To test and evaluate the performance of the load distri-

bution scheme, we performed a simulation study using the
OPNET network simulator [11]. The goal of our simula-
tion was to show that the load distribution scheme pre-
vents congestion in the network, maintains high link util i-
zation, fairly distributes available bandwidth among indi-
vidual flows, and incurs a very small l oad overhead. We
also compare the proposed definitions of fairness and
show that the maximizing utili ty fairness achieves higher
throughput in the network.

Figure 2. Simulation Topology.

In our simulation we consider four sources sending
multimedia traff ic through the network of Figure 2,
which shows the topology used in the simulation as well
as the destination, RLR, and the timeframe of operation
for each source. For example, SRC 1 starts sending its
traff ic to DEST 4 at time 185 seconds and finishes at the
end of the simulation. Its RLR is [400 Kbps, 1200 Kbps].
Each link in the network is provisioned with 1544 Kbps.
We implemented and tested the bi-directional version of
the LDS but in the paper we consider only a unidirec-
tional case in order reduce the complexity of discussion.

4.1 Evaluation of the congestion prevention
If the probe message indicates that additional traff ic

will not cause congestion on the path, then the new flow
can start transmitting before the RLR change message is
sent. However, if additional traff ic will cause congestion,
then the ingress node generates an RLR change message
and wil l allow the new flow to transmit its traff ic only
when the CN message arrives. Thus, upon a new flow’s
activation, congestion can still occur only if the ingress
node wil l increase its sending rate before other ingress
nodes that contribute to congestion will slow down.
However, congestion will only last until all participating
ingress nodes receive the congestion notifications and
adjust their sending rates.

Ingress
node

Flow
activation

Probe Probe Reply
RLR change

Congestion
Notification

Ingress 12 Source 2 110.02 sec 110.19 sec 110.26 sec
Ingress 3 Source 3 170.01 sec 170.10 sec 170.13 sec

Table 1.Control message exchange timing

[800, 2000]
T = [170 s, 260 s]
DEST 1

Ingress 12

Ingress 3 Ingress 4

Egress 1 Egress 2

Egress 3

Core 2 Core 5 Core 3

SRC 1

SRC 2

SRC 3 SRC 4

DEST 1 DEST 2

DEST 3

DEST 4

[200 , 1000]
T=110 s
DEST 3

[500, 1300]
T = [60 s, 360 s]

DEST 2

[400, 1200]
T=185 s
DEST 4

Table 1 shows the arrival and departure times of the
control packets at the ingress nodes upon the flow’s acti-
vation. These results were collected using the simulation
scenario shown in Figure 2.

One could observe that Ingress 3 needed significantly
less time to complete the message exchange as compared
to Ingress 12. This phenomenon is explained by the fact
that Ingress 12 probes a longer path than Ingress 3. Simi-
larly, both ingress nodes waited longer for the probe reply
than for the arrival of the congestion notification after the
RLR change. This happens because the probe has to trav-
erse a complete round trip path, while an intermediate
core router, and not an egress node, may generate the
congestion notification. Thus, in general, a complete con-
trol message exchange initiated by a flow activation will
last not longer than two round trip times (RTT).

Ingress Node Congestion Notification
(CN) arrival time

Ingress12 185.573 seconds
Ingress 3 185.530 seconds
Ingress 4 185.514 seconds

Table 2. Arrival times of CN messages due to the flow activation

To better understand how long the congestion may last,
let us examine what happens when SRC 1 starts sending
traff ic at T=185 seconds. Table 2 provides a list of the
congestion notification arrival times caused by the activa-
tion of SRC 1. Ingress 12, which requested the RLR
change, receives a congestion notification and adjusts its
sending rate at time 186.507 seconds, while ingress nodes
3 and 4 receive their congestion notifications at times
186.465 and 186.376 seconds, respectively. Thus, in this
situation, congestion was avoided, because ingress nodes
3 and 4 were able to reduce their sending rates before In-
gress 12 injected additional traffic.

If Ingress nodes 3 and 4 would receive the congestion
notification after Ingress 12, then congestion would not be
avoided. However, even in the worst case, congestion
would last only from the time of the sending rate increase
until the time the last ingress node that contributes to con-
gestion receives its notification. This amount should be
limited by the longest RTT.

4.2 Fairness schemes and link utilization

Figures 3 – 5 show how the ingress nodes adjust their
sending rates for the scenario described in Figure 2.
These results were collected using the maximizing utility
definition of fairness. Note that throughout the simulation
the ingress nodes share available resources fairly. For
example, during the time period [185 sec, 260 sec] the
link core 2 – core 5 is a bottleneck for ingress nodes 12
and 3, while link core 5 – core 3 is the bottleneck for the
ingress nodes 12 and 4. As a result, available resources
are distributed as follows: sending rate for the Ingress 12

is 682 Kbps, 862 Kbps for Ingress 3, and 648 Kbps for
Ingress 4; their fair shares at the respective bottlenecks.
However, since Ingress 12 cannot fully utilize its fair
share at the link core 5 – core 3 due to the bottleneck at
core 2 – core 5, Ingress 4 is able to use the excess band-
width and gradually increase its sending rate.

Figure 3. Load distribution by the Ingress Router 12

Figure 4. Load distribution by the Ingress Router 3

Figure 5. Load distribution by the Ingress Router 4

Figure 6 shows utili zation of the links core 2 – core 5
and core 5 – core 3, which indicates that for the duration
of the experiment at least one of the links was 100% util-
ized. Furthermore, even when the Ingress 12 was not able
to send traffic at its fair share on the link core 5 – core 3,
the link util ization oscil lated around 95%.

To compare performance of the proportional and
maximizing util ity definitions of fairness we slightly
modified our scenario. In the new scenario, we change
RLR of SRC 4 to [800 Kbps, 900 Kbps]. Figures 7 and 8
show link util ization for the different definitions of the
fairness. As Figure 8 shows, proportional fairness does
not util ize link resources completely during the time pe-
riod [110 sec, 170 sec], while the maximizing utili ty fair-
ness does, as shown in Figure 7.

Figure 6. Link Utilization using

Maximizing Utility Fairness

Figure 7. Link Utilization using

Maximizing Utility fairness

The proportional fairness suffers from this deficiency
because if the fair share of the ingress node is larger than
its maximum requested rate, then the ingress node sends
traff ic at its maximum requested rate and leftover band-
width is not distributed among the rest of the ingress
nodes. If FSi

k> Bi
k then the link wil l be underutil ized be-

cause Σi(FSi
k) = Ck. Let us examine when proportional

fairness causes link underutili zation.

k
i

k
i

k

k
k
ik

k
ik

b

B

b

C
B

b

b
C >⇒> (8)

Thus, using proportional definition of fairness link i
will be underutili zed whenever inequality (8) holds. How-
ever, maximizing utili ty fairness always utilizes the link if
the maximum value of the interface RLR is larger than the
interface’s capacity.

() () kkk
i

k
ikk

k
i

k
ikkk

ikk

k
i

k
ikkk

i BCbB
bB

bB
bCB

bB

bB
bCb >⇒−>

−
−−⇒>

−
−−+ (9)

Inequality (9) shows that using maximizing utili ty defi-
nition of fairness the link i is underutilized only if the
maximum requested rate on the interface is lower than the
link’s capacity. Otherwise the link bandwidth is com-
pletely utili zed. Our simulation results support these ob-
servations.

Figure 8. Link Utilization using

Proportional fairness

4.3 Examining the overhead
We define the control load overhead caused by the LDS

as the ratio between the total number of the data and con-
trol packets generated. Figure 9 shows how the frequency
of the periodic path probing influences the load overhead.
As expected, control packet overhead increases as the
probe generation rate grows. Still , even when we raise the
probe generation rate to 1 packet every 4 seconds, the
overall overhead did not reach 0.8%. However, the probe
generation rate is not the only factor that affects the over-
head. In a network with a lot of short-lived flows, RLR
change and congestion notification messages could sig-
nificantly increase the overall load. We address this prob-
lem in the next section.

Figure 9. Control packet overhead vs. Probe Generation Rate

5. Scalability and per-flow QoS
In the previous section, we have shown that the LDS

incurs insignificant load overhead. However, in our simu-

lation we used a small network with fairly large flows.
Large networks usually have a lot of short-lived, small
flows, which activate and terminate very frequently. As a
result, LDS may incur a noticeable amount of overhead
due to control message exchange. Furthermore, frequent
advertisements of RLR change and subsequent rate ad-
justments may cause extreme variation of the congestion
level in the network, which would increase the number of
control messages being exchanged. Thus, initiating the
RLR change phase each time a small flow activates or
terminates could be detrimental to the scalabili ty of LDS.

To eliminate this problem, we propose that the ingress
nodes request large chunks of the resources to accommo-
date frequent activation and de-activation of the small
flows. For example, for large long-term flows, the ingress
nodes would request RLR change each time they are acti-
vated or deactivated, but for small short-term flows, in-
gress nodes would generate RLR change requests only
when the aggregated RLR of the small flows goes beyond
a certain threshold. This approach would reduce the over-
all number of control messages and thus would improve
scalabil ity of the load distribution scheme.

Figure 11. Requested and active RLRs

To implement this approach, we consider when the in-
gress node should advertise the RLR change of the flow
aggregate. Let the RLR that the ingress node requested on
the path be the Requested RLR, and the RLR that the
flows asked for from the ingress node be the Active RLR.
The ingress node would generate an RLR change message
only if the difference between the Requested RLR fair
share and the Active RLR fair share goes beyond some
threshold value. Figure 11 shows a relationship between
the Active and Requested RLR values.

Introduced LDS also provides the possibil ity of imple-
menting a variety of services on a per-flow basis. In order
to preserve such LDS properties as fairness among ingress
nodes, high link util ization, and congestion prevention,
the ingress nodes should use the same definition of fair-
ness throughout the network when computing their band-
width share. However, the ingress nodes may use differ-
ent and more complex policies when distributing re-
sources among the flows. Each ingress node may imple-
ment its own set of load distribution policies without in-
terfering with the policies of other ingress nodes, which
makes LDS extremely flexible in terms of providing per-
flow QoS.

6. Related work overview
This paper is a direct extension and improvement of the

work done in [4], which addresses the same problem
through the approximation of the ingress node fair share
based on network feedback. The approach proposed in [4]
is less accurate in computing the fair share of ingress
nodes, takes longer time to converge, and does not guar-
antee fair load distribution among the edge nodes under
all network conditions.

In [6], Kar et al provided an excellent definition of the
dynamic rate control problem and introduced an iterative
algorithm that solves it. In [6], individual sources adjust
their sending rates based on the utili ty function and the
network feedback which consists of information about the
number of congested links on the path. However, the al-
gorithm proposed in [6] converges to the optimal values
slowly, operates on a per-flow basis, requires sources to
communicate their sending rates to the core routers, and
relies on the ACK packets to carry the feedback. In cer-
tain situations, the solution proposed in [6] becomes un-
acceptable because of these features.

Mirhakkak et al introduced a somewhat related idea in
[10]. Their goal was to modify the resource reservation
protocol RSVP for supporting dynamically changing QoS
requirements in mobile ad hoc networks. The proposed
dRSVP mechanism also assumes that each flow requests
resources in a range. When a new flow enters the network
and there are not enough resources to accommodate it, the
congested link will adjust the reservations of other flows
in order to accept the new flow’s reservation. Unfortu-
nately dRSVP also work on a per-flow basis and thus
does not scale well. Furthermore, it does not guarantee
that the links in the network wil l be fully utili zed and it
allows periods of QoS degradation.

 The Explicit Congestion Notification (ECN) model
[12] requires that the sources wil l reduce their rates upon
reception of the CE marked packets. Both Explicit Con-
gestion Notification approach and simple rate control al-
gorithm [6] assume that the sources are well behaved and
would reduce their sending rate upon congestion notifica-
tion arrival. Unfortunately in the diverse Internet envi-
ronment, we cannot be sure that all the sources will be-
have as requested. Thus neither of these approaches pro-
vides protection against denial-of-service attacks. On the
contrary, the load distribution scheme that we have intro-
duced deals with trustworthy boundary nodes that would
adjust sending rates regardless of the user behavior and
thus mitigates the possibili ty of misbehaving sources
launching a denial-of-service attack.

The problem of admission control [3, 6-7] and con-
trolled-load services [13] is somewhat related to the issues
discussed in this paper. However they address a slightly
different problem of determining when a new flow could

Requested
minRLR

Active
minRLR

Requested RLR
fair share

Requested
maxRLR

Active
maxRLR

Bandwidth RLR allocated on the path

RLR requested by the currently active flows

Compared with threshold

Active RLR
fair share

be accepted into the network, while the LDS examines the
problem of how to fairly distribute resources among the
sources in order to accommodate the new flow’s request.

7. Conclusions and future work
In this paper we introduced a new load distribution

scheme that allows fast and fair rate adjustment at the
edge nodes. Our scheme requires a core node to maintain
information about the edge nodes that send traff ic through
its interfaces and it uses a message exchange protocol to
distribute this information. However, the core nodes do
not keep any per-flow information and the message ex-
change protocol does not cause too much overhead. In the
worst case, the proposed load distribution scheme requires
two RTTs to adjust the sending rate among the ingress
nodes. However, it requires at most the length of the
longest RTT to eliminate congestion in the network.

Currently, we are further investigating the characteris-
tics of the introduced load distribution scheme. In particu-
lar, since each ingress node probes the path and requests
RLR change independently of other nodes, we are exam-
ining the possibili ty of race conditions. In the current ver-
sion of the LDS implementation, we employ timers to
determine the freshness of the collected information;
however we believe that this may not be enough to solve
the problem of race conditions. In addition, we are exam-
ining possibili ties of improving the scalabil ity of the LDS,
building service policies for providing per-flow QoS, and
expanding the LDS to a mobile environment.

8. References
[1] H. Chow, A. Leon-Garcia, "A Feedback Control Extension to Differenti-

ated Services", March 1999. I-D: draft-chow-diffserv-fbctrl.txt.
[2] D. Clark, W. Fang, "Expli cit All ocation of Best Effort Packet Deli v-

ery Service," IEEE/ACM Transactions on Networking, vol. 6, no. 4,
pp. 362-373, August 1998.

[3] R.J. Gibbens, F.P. Kelly, "Distributed connection acceptance control for
a connectionless network", ITC 16. Elsevier, 1999. 941-952.

[4] V. Hnatyshin and A.S. Sethi, “ Avoiding Congestion Through Dynamic
Load Control,'' SPIE' s Int’ l Symposium on The Convergence of Informa-
tion Technologies and Communications, Aug. 2001, pp. 309-323.

[5] V. Hnatyshin and A.S. Sethi, “ Providing per-flow QoS using load distri-
bution scheme,” TR 2002-06, Department of Computer and Information
Science, University of Delaware, February 2002.

[6] K. Kar, S. Sarkar, L. Tassiulas, "A Simple Rate Control Algorithm for
Maximizing Total User Utility," Proc. of INFOCOM 2001, pp. 133-141.

[7] F.P. Kelly, P.B. Key, S. Zachary, "Distributed Admission Control",
IEEE Journal on Selected Areas in Comm., 18 (2000) 2617-2628.

[8] T. Kell y, “ An ECN Probe-Based Connection Acceptance Control,”
Computer Communication Review 31(3), July 2001.

[9] A.F. Lobo and A.S. Sethi, '' A cooperative congestion management
scheme for switched high-speed networks,' ' Proc. ICNP-96, International
Conference on Network Protocols, Oct.-Nov. 1996, pp. 190-198.

[10] M. Mirhakkak, N. Schult, D. Thomson, "Dynamic Quality-of-Service
for Mobile Ad Hoc Networks," MobiHOC 2000. First Annual Workshop
on Mobile and Ad Hoc Networking and Computing, 2000, pp. 137 –138.

[11] OPNET Modeler. OPNET Technologies Inc. http://www.mil3.com
[12] K. K. Ramakrishnan, Sall y Floyd, D. Black, "The Addition of Explicit

Congestion Notification (ECN) to IP", March 2001. Internet Draft: draft-
ietf-tsvwg-ecn-03.txt.

[13] J. Wroclawski, “ Specification of the Controlled-Load Network Ele-
ment Service,” September 1997. IETF RFC 2211.

9. Appendices
Appendix A. The rate reduction at the edges

The congestion notification message that arrives at the ingress
node contains the list of the interfaces that experience congestion.
Based on the IP address of each congested interface in the list, the
ingress node identifies corresponding entries in the router table and
updates them with the new information. After that, the ingress node
identifies the set of flows that travels through each congested inter-
face. We define the set of flows that visit interface k as

}|{ kff visit
k →=Φ .

Subsequently, the ingress node computes a new sending rate for
each flow that belongs to the set

kΦ starting from the last con-

gested interface in the list, which is arranged in the order from the
closest to the most distant interface from the ingress node. Since
each flow may visit multiple interfaces in the list, we adjust the
sending rate of the flow only once according to the information of
the interface that it visits last, the interface that is located the closest
to the end of the list. If there are n congested interfaces in the list
then the set of flows that reduce their sending rate based on the
congestion information of the interface k is computed as follows: �

njk
jk

k

≤<

Φ−Φ=Φ (10)

Then the new rate for each flow f that belongs to the set kΦ is
computed according to equations (5) or (7) presented in Section 2.

Appendix B. Determining the congestion status
The interface k is congested if the following inequality holds:

k

Ui

down
i

k CRR
down

>∆− ∑
∈

 (11)

We use symbol Udown to denote the set of all the ingress nodes
that adjust their sending rates because of the congestion down-
stream and symbol ∆Ri

down to denote the amount of bandwidth re-
leased by the ingress node i∈ Udown due to congestion.

Interface k computes the amount of bandwidth released by the
ingress node i due to the congestion downstream, which we call
rate decrease, as the difference between the fair shares of the in-
gress node i before and after the RLR change phase. Equations (13)
and (14) show how the rate decrease by the ingress node i is com-
puted for the proportional and maximizing utility definitions of
fairness respectively.

after
i

before
i

down
i FSFSR −=∆ (12)

 ()∑ −
−=∆ +

downK
fk

f

k

k
k
i

k
i

down
i bb

b

b

C
bbR 1 (13)

() ()
() () () 





−
−−+

−−−

−−−
=∆

∑ ++

kk

ff
kkf

ffkk
K

k
i

k
i

k
i

k
i

down
i

bB

bB
bCb

bBbB

bBbB

R
down

11

 (14)

We used superscript down to denote information associated with
the downstream interfaces. We use notation Kdown to denote the set
of the downstream interfaces that cause ingress nodes to reduce
their sending rates. A more detailed description of the rate decrease
computation can be found in [5].

