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ABSTRACT 

The current best effort approach to quali ty of service (QoS) 
in the Internet can no longer satisfy a diverse variety of cus-
tomer service requirements, and that is why there is a need 
for alternative strategies. We believe that the Internet needs 
means for providing a fine-grained per-flow QoS that does 
not cause network congestion and keeps overall l ink utiliza-
tion high. In this paper we introduce an efficient, fast and 
scalable load distribution mechanism, which fairly distributes 
available resources among the flows based on their resource 
requirements. The load distribution scheme (LDS) is imple-
mented via a message exchange protocol which maintains 
high link util ization while incurring low overhead. We study 
the LDS and compare two fairness mechanisms introduced 
within the LDS framework using simulations in OPNET. 
 
Keywords: Quality of service, dynamic admission control, load 
distribution, network feedback, fair rate distribution  
 

1. Introduction.  
The “one service for all” model used by the current 

Internet can no longer satisfy the multitude of customer 
requirements. We believe that the Internet needs is a scal-
able mechanism for providing a fine-grained per-flow 
quali ty of service that does not cause congestion in the 
network and keeps overall utili zation of the links high. In 
author’s opinion, one of the best ways to achieve this goal 
is to introduce a load distribution scheme (LDS) at the 
network boundaries. Such a scheme would require the 
ingress nodes to limit sending rates of the flows based on 
the congestion level in the network. 

In this paper we introduce a fast, eff icient, and scalable 
load distribution mechanism that fairly distributes avail-
able resources among the flows based on their resource 
requirements. The LDS is based on the idea that during 
congestion, an overloaded interface notifies the ingress 
nodes that contribute to the congestion asking them to 
reduce transmission rates of the flows. Upon receiving 
congestion notification message, the ingress router com-
putes its new share of the bandwidth on the overloaded 
interface and distributes it among individual flows. The 
proposed LDS guarantees that each flow receives at least 
its minimum requested amount of bandwidth, while any 
additional resources are shared among all flows in a fair 
manner. The LDS admits a new flow into the network 
only if there is enough resources to satisfy the flow’s re-

quest. The LDS is implemented using a message ex-
change protocol that retains high link util ization and in-
curs low overhead. 

The LDS is most beneficial to applications that can tol-
erate variation of their transmission rate while stil l provid-
ing the end-user with an adequate level of service quali ty. 
FTP is an example of such an application; it tolerates 
variation in the downloading speed but can use as much 
bandwidth as the network can provide. Multimedia appli-
cations can also benefit from the LDS. Such applications 
cannot operate below certain transmission rates because 
the quali ty of the picture or sound becomes unrecogniz-
able; however, they can tolerate variation of the allocated 
bandwidth as long as the quali ty of arriving data is ac-
ceptable to the receiver. 

The rest of this paper is organized as follows. Section 2 
introduces definitions of fairness, while section 3 de-
scribes the message exchange protocol used in the LDS. 
Section 4 presents simulation results and in Section 5 we 
discuss scalabili ty issues and examine the problem of 
providing per-flow QoS within the LDS framework. Sec-
tion 6 provides an overview of the related. Finally, we 
conclude in Section 7 with possible future directions. 
 

2. Fairness Definitions  
In order to determine a permissible sending rate of a 

flow, each boundary node maintains a Requested Load 
Range, RLR = (bf, Bf), for the flows that enter the network 
domain through it. A flow’s RLR consists of two values: a 
minimum rate, bf, below which the flow cannot operate 
normally and the maximum rate, Bf, that the flow can util-
ize. The flow’s sending rate, Rf, is limited by its RLR and 
lies within this requested range. Throughout the paper we 
wil l often refer to numerous definitions of the RLR ag-
gregates. To avoid potential confusion we define these 
aggregates as follows.  

In addition to the flow RLRs, each ingress node keeps 
track of the path RLRs. The path RLR, (bi

P, Bi
P), or the 

RLR of the ingress node i on the path P is a load range 
where bi

P corresponds to the sum of the minimum re-
quested rates of the flows that originate from the ingress 
node i and traverse the path P, while Bi

P is the sum of the 
corresponding requested maximum rates. Using f →P to 
denote that flow f traverses path P, we define the path 
RLR as follows: 
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Similarly, we define interface and aggregated interface 
RLRs for the core router interfaces. The interface RLR of 
interface k for the ingress node i, (bi

k, Bi
k), is the sum of 

the path RLRs of the ingress node i, subject to the condi-
tion that the paths include interface k. 
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To avoid confusion, we wil l use an upper-case letter 
(e.g. P) for a path and a lower-case letter (e.g. k) for an 
interface. Finally, the aggregated interface RLR of inter-
face k, (bk, Bk), is the sum of its interface RLRs.  
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Ingress nodes obtain the flow RLRs from the service 
level agreements established with the user, and they com-
pute the path RLRs based on these values. Each core in-
terface obtains interface RLRs from the ingress node’s 
advertisements and computes an aggregated interface 
RLR. Ingress nodes maintain information about individual 
flows (e.g. flow’s RLR) and their corresponding paths 
(e.g. path RLRs), while the core routers maintain only 
per-ingress node information (e.g. interface RLRs). A 
more detailed overview of the data structures maintained 
in the ingress and core nodes is provided in [4]. 

Congestion notification messages carry interface and 
aggregated interface RLRs. These values allow ingress 
nodes to fairly distribute available resource among indi-
vidual flows. In this paper we examine two definitions for 
computing an ingress node’s fair share. The first defini-
tion, which we call proportional, computes the fair share, 
FSi

k, of the ingress node i proportionally to the minimum 
value of its interface RLR on the congested interface k:  
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where Ck is the capacity of the outgoing link on interface 
k. According to equation (4), each ingress node receives 
its share of the interface’s capacity proportionally to its 
minimum requested rate on the congested interface. The 
fair share of each flow that contributes to the congestion 
is computed in a similar way. Furthermore, the fair share 
of the flow f, FSf, is also proportional to its minimum re-
quested rate on the congested interface: 
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The second definition of fairness computes the fair 
share of an ingress node proportionally to the difference 
between the maximum and the minimum requested rates, 
which is the amount of bandwidth the flow needs to maxi-
mize its performance. We call this fairness definition a 
maximizing utility fairness. Thus, the fair share on con-

gested interface k of ingress node i and of flow f is com-
puted as follows: 
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3. The message exchange protocol 
The message exchange protocol consists of three dis-

tinct phases. During the first phase, called path probing, 
the ingress node attempts to learn about the current state 
of a path or to learn the path itself if the route to the 
flow’s destination is unknown. The probe messages col-
lect the current arrival rate of the traff ic and the aggre-
gated interface RLR for each traversed link. The probe 
messages are generated either periodically or when a new 
flow is activated. Periodic probing is used to determine if 
the ingress node can increase its sending rate on the path, 
while the probing caused by the flow activation deter-
mines if the new flow can be admitted into the network. 

Admission of a newly activated flow into the network 
or a flow termination initiates the second phase called the 
RLR change phase. The purpose of this phase is to update 
the interface RLRs along the flow’s path. If the admission 
of the new flow causes congestion anywhere along the 
path, then the ingress node initiates the third phase, called 
the Rate Reduction Phase. During the third phase con-
gested interfaces notify ingress nodes to slow down.  

The message exchange protocol uses the following 
message types. In the first phase, ingress nodes generate 
PROBE packets and receive results of the path probing 
via PROBE_REPLY messages. In the second phase, in-
gress nodes advertise changes using RLR_CNG packets. 
CN and CN_CORE messages are used during the rate 
reduction phase to convey information about congested 
interfaces to the ingress and core nodes respectively. 

 

3.1 The Path Probing Phase 
The purpose of the path probing is to learn the current 

arrival rate and the aggregated interface RLR at each link 
on the path of interest. The PROBE messages are gener-
ated by an ingress node either periodically or due to the 
activation of a new flow, and are processed by all core 
routers on the path to the specified egress node. When a 
core router receives a PROBE message, it retrieves infor-
mation about the interface on which the probe message 
will depart. This information consists of the IP address of 
the interface, estimated total arrival rate, capacity, and an 
aggregated interface RLR. The interface information is 



  

stored in the body of the PROBE, and the message itself 
is forwarded further along the path. The PROBE_REPLY 
message that carries collected path information from the 
egress node back to the ingress node does not require any 
additional processing by the core routers.  

Information collected by the PROBE is used to update 
the path state information at the ingress node. Each in-
gress node maintains three tables: a flow table, a path ta-
ble, and an interface table. The flow table contains infor-
mation such as the flow RLR, the current sending rate, 
and the destination address of each flow. The path table 
contains information about each path that is being trav-
ersed by the traff ic originating from this ingress node. The 
path table entry contains the ordered list of the interfaces 
that belong to the path and the list of the flows that travel 
on this path. Information about each interface of the path 
is maintained in the interface table. An interface table 
entry contains the IP address of the interface, the total 
arrival rate, capacity, and an aggregated interface RLR.  

Once the internal tables are updated, the ingress router 
examines the cause of the PROBE generation. If it was a 
periodic probe, then the ingress node examines the path 
information in order to determine if there is excess band-
width available on the path. If the probe was generated 
due to flow activation, then the ingress node calculates the 
new flow’s permissible rate and initiates the RLR change 
phase. Details regarding computation of the available re-
sources on the path and new flow’s rate can be found in 
[5]. They were omitted due to space limitations. 

 

3.2 The RLR change phase 
The ingress node initiates the RLR change phase upon 

flow activation or termination. The RLR_CNG message 
generated due to flow activation is always preceded by the 
path probing phase, during which the ingress node com-
putes the sending rate of the new flow and determines if 
such a rate increase wil l cause congestion anywhere on 
the path. An interface k considered to be congested if the 
new flow’s rate causes the total arrival rate on the inter-
face to be larger then its capacity: Af + Rk  > Ck.  

If addition of a new flow causes one or more interfaces 
on the path to become congested, the ingress node identi-
fies an interface that will i nitiate the rate reduction proc-
ess. Such interface should satisfy two conditions: it should 
be congested and it should be located the smallest number 
of hops away from the destination along the flow’s path. 
The second condition allows aggregation of congestion 
notifications because the rate reduction process works 
opposite to the flow of traff ic on the path.  

Subsequently, the ingress node generates and forwards 
the RLR_CNG message which contains the RLR and the 
sending rate of the new flow and the identity of the inter-
face that will i nitiate the rate reduction process. The inter-

face identity field is empty if there is no congestion on the 
path or if the RLR_CNG is generated upon flow termina-
tion. When a core router on the flow’s path receives this 
message, it updates its interface RLR and the estimated 
arrival rate on the outgoing interface. The core router ini-
tiates the rate reduction process if the identity of its outgo-
ing interface is included in the RLR_CNG message.  

The RLR change message generated due to flow deacti-
vation causes a decrease of the interface RLR on each 
interface of the path. This in turn causes an increase in the 
fair share for each ingress node that sends traff ic through 
the interface. However, since none of the ingress nodes 
knows about the RLR decrease, they continue sending 
traff ic at the rate below their new fair share, which may 
result in temporary underutil ization. The LDS relies on 
the periodic probing instead of explicit advertisement of 
available bandwidth to deal with such situation. A flow 
may only increase its sending rate if each interface on the 
path has excess bandwidth available. This information can 
be obtained only by probing the path.  
 

3.3 The Rate Reduction Phase 
The Rate Reduction Phase begins when the core router 

interface chosen to initiate the rate reduction process re-
ceives the RLR_CNG message. We wil l use k to denote 
this interface. The ingress node that requested the RLR 
change will be called the initiator. The Rate Reduction 
Phase consists of two steps: identifying the ingress nodes 
to throttle, and generating congestion notifications.  

 

3.3.1 Identifying ingress nodes to throttle 
The core router identifies the set Uk that consists of in-

gress nodes that send traff ic through interface k. The set 
Uk is then divided into two subsets Uk

indirect and Uk
direct, 

called indirect and direct notification sets, respectively. 
Ingress nodes whose traff ic arrives on the same incoming 
link to interface k as traffic from the initiator belong to 
Uk

indirect, while the remaining ingress nodes belong to the 
set Uk

direct= Uk - Uk
indirect.  

 

 
 

 
 
 

Figure 1. Selection of the direct and indirect notification sets. 
 

 Figure 1 shows an example of how these sets are being 
selected. The initiator A causes congestion on the inter-
face k of the core router C2.  The set Uk consists of A, B, 
and C, because their traff ic traverses the interface k. The 
indirect notification set, Uk

indirect, contains ingress nodes A 
and B and the direct notification set, Uk

direct, contains only 
ingress node C.  

Since initiator may cause congestion on multiple links, 
the indirect notification set contains ingress nodes that 

Ingress C Ingress B 

Congested 
interface k 

Initiator 

Ingress A C1 C2 C3 Egress E 



  

contribute to congestion not only on the current interface 
k but possibly on other upstream interfaces. Thus, to avoid 
dealing with multiple congestion notifications and to re-
duce the overall number of control messages, the core 
routers aggregate information about the ingress nodes that 
belong to the indirect notification set. This information is 
carried in a CN_CORE message to the upstream nodes. 

By contrast, traff ic from ingress nodes that belong to 
the direct notification set does not influence the conges-
tion situation upstream but it does contribute to the con-
gestion in the current interface k. Thus, these ingress 
nodes are directly notified through the CN message.  

 

3.3.2 Generating congestion notifications  
The CN message carries information about the con-

gested interfaces that requested a rate reduction to a single 
ingress node in the direct notification set. The CN_CORE 
message carries such information to multiple (all ) ingress 
nodes in the indirect notification set via other upstream 
nodes. Both CN and CN_CORE messages carry the fol-
lowing information about the congested interface(s):  IP 
address, interface and aggregated interface RLRs, and the 
capacity. Ingress nodes that receive CN distribute the load 
according to the algorithm presented in Appendix A. Up-
stream nodes that receive CN_CORE may need to update 
the payload of the forwarded CN_CORE and newly cre-
ated CN messages. 

Upstream nodes that receive the CN_CORE message 
update notification packets only if the outgoing interface j 
corresponding to the link on which the CN_CORE mes-
sage arrived is congested and satisfies one of the follow-
ing rules. The core routers determine congestion status of 
the interface j by comparing the link capacity with the 
difference between the total arrival rate on the interface j 
and the rate reduction requested downstream. For more 
details see Appendix B. 

Rule 1: If the rate reduction on the congested interface j 
is larger than the rate reduction on the downstream inter-
faces, then the information about these downstream inter-
faces is replaced with the data of the interface j.  

Rule 2: Otherwise, if the interface RLR on the con-
gested interface j is larger than that on the next-hop 
downstream interface, then the information about the in-
terface j is added to the corresponding ingress node entry 
in the control messages.  

In rule 1, we define the rate reduction on interface j to 
be larger than that on interface j’  if for the same RLR val-
ues, the interface j causes larger rate decrease then the 
downstream interface j’ . These rules apply to each ingress 
node entry separately because individual ingress nodes 
may contribute to congestion on different sets of inter-
faces.  

 

4.  Simulation Results 
To test and evaluate the performance of the load distri-

bution scheme, we performed a simulation study using the 
OPNET network simulator [11]. The goal of our simula-
tion was to show that the load distribution scheme pre-
vents congestion in the network, maintains high link util i-
zation, fairly distributes available bandwidth among indi-
vidual flows, and incurs a very small l oad overhead. We 
also compare the proposed definitions of fairness and 
show that the maximizing utili ty fairness achieves higher 
throughput in the network. 
 

 
  

 
 
 
 
 
 
 

Figure 2. Simulation Topology. 

 

In our simulation we consider four sources sending 
multimedia traff ic through the network of Figure 2, 
which shows the topology used in the simulation as well 
as the destination, RLR, and the timeframe of operation 
for each source. For example, SRC 1 starts sending its 
traff ic to DEST 4 at time 185 seconds and finishes at the 
end of the simulation. Its RLR is [400 Kbps, 1200 Kbps]. 
Each link in the network is provisioned with 1544 Kbps. 
We implemented and tested the bi-directional version of 
the LDS but in the paper we consider only a unidirec-
tional case in order reduce the complexity of discussion. 

 

4.1 Evaluation of the congestion prevention  
If the probe message indicates that additional traff ic 

will not cause congestion on the path, then the new flow 
can start transmitting before the RLR change message is 
sent. However, if additional traff ic will cause congestion, 
then the ingress node generates an RLR change message 
and wil l allow the new flow to transmit its traff ic only 
when the CN message arrives. Thus, upon a new flow’s 
activation, congestion can still occur only if the ingress 
node wil l increase its sending rate before other ingress 
nodes that contribute to congestion will slow down. 
However, congestion will only last until all participating 
ingress nodes receive the congestion notifications and 
adjust their sending rates. 

 

Ingress 
node 

Flow  
activation 

Probe Probe Reply 
RLR change 

Congestion  
Notification 

Ingress 12 Source 2 110.02 sec 110.19 sec 110.26 sec  
Ingress 3 Source 3 170.01 sec 170.10 sec 170.13 sec 

Table 1.Control message exchange timing 
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Table 1 shows the arrival and departure times of the 
control packets at the ingress nodes upon the flow’s acti-
vation. These results were collected using the simulation 
scenario shown in Figure 2.  

One could observe that Ingress 3 needed significantly 
less time to complete the message exchange as compared 
to Ingress 12. This phenomenon is explained by the fact 
that Ingress 12 probes a longer path than Ingress 3. Simi-
larly, both ingress nodes waited longer for the probe reply 
than for the arrival of the congestion notification after the 
RLR change. This happens because the probe has to trav-
erse a complete round trip path, while an intermediate 
core router, and not an egress node, may generate the 
congestion notification. Thus, in general, a complete con-
trol message exchange initiated by a flow activation will 
last not longer than two round trip times (RTT). 
 

Ingress Node  Congestion Notification 
(CN) arrival time 

Ingress12 185.573 seconds  
Ingress 3 185.530 seconds 
Ingress 4 185.514 seconds 

Table 2. Arrival times of CN messages due to the flow activation 
 

To better understand how long the congestion may last, 
let us examine what happens when SRC 1 starts sending 
traff ic at T=185 seconds. Table 2 provides a list of the 
congestion notification arrival times caused by the activa-
tion of SRC 1. Ingress 12, which requested the RLR 
change, receives a congestion notification and adjusts its 
sending rate at time 186.507 seconds, while ingress nodes 
3 and 4 receive their congestion notifications at times 
186.465 and 186.376 seconds, respectively. Thus, in this 
situation, congestion was avoided, because ingress nodes 
3 and 4 were able to reduce their sending rates before In-
gress 12 injected additional traffic.  

If Ingress nodes 3 and 4 would receive the congestion 
notification after Ingress 12, then congestion would not be 
avoided. However, even in the worst case, congestion 
would last only from the time of the sending rate increase 
until the time the last ingress node that contributes to con-
gestion receives its notification. This amount should be 
limited by the longest RTT. 

 
4.2 Fairness schemes and link utilization   

Figures 3 – 5 show how the ingress nodes adjust their 
sending rates for the scenario described in Figure 2.  
These results were collected using the maximizing utility 
definition of fairness. Note that throughout the simulation 
the ingress nodes share available resources fairly. For 
example, during the time period [185 sec, 260 sec] the 
link core 2 – core 5 is a bottleneck for ingress nodes 12 
and 3, while link core 5 – core 3 is the bottleneck for the 
ingress nodes 12 and 4. As a result, available resources 
are distributed as follows: sending rate for the Ingress 12 

is 682 Kbps, 862 Kbps for Ingress 3, and 648 Kbps for 
Ingress 4; their fair shares at the respective bottlenecks. 
However, since Ingress 12 cannot fully utilize its fair 
share at the link core 5 – core 3 due to the bottleneck at 
core 2 – core 5, Ingress 4 is able to use the excess band-
width and gradually increase its sending rate. 

 
Figure 3. Load distribution by the Ingress Router 12 

 

 
Figure 4. Load distribution by the Ingress Router 3 

 

 
Figure 5. Load distribution by the Ingress Router 4   

 

Figure 6 shows utili zation of the links core 2 – core 5 
and core 5 – core 3, which indicates that for the duration 
of the experiment at least one of the links was 100% util-
ized. Furthermore, even when the Ingress 12 was not able 
to send traffic at its fair share on the link core 5 – core 3, 
the link util ization oscil lated around 95%. 



  

To compare performance of the proportional and 
maximizing util ity definitions of fairness we slightly 
modified our scenario. In the new scenario, we change 
RLR of SRC 4 to [800 Kbps, 900 Kbps]. Figures 7 and 8 
show link util ization for the different definitions of the 
fairness. As Figure 8 shows, proportional fairness does 
not util ize link resources completely during the time pe-
riod [110 sec, 170 sec], while the maximizing utili ty fair-
ness does, as shown in Figure 7.  

 
Figure 6. Link Utilization using  

Maximizing Utility Fairness 
 

 
Figure 7. Link Utilization using  

Maximizing Utility fairness 
 

The proportional fairness suffers from this deficiency 
because if the fair share of the ingress node is larger than 
its maximum requested rate, then the ingress node sends 
traff ic at its maximum requested rate and leftover band-
width is not distributed among the rest of the ingress 
nodes. If FSi

k> Bi
k then the link wil l be underutil ized be-

cause Σi(FSi
k) = Ck. Let us examine when proportional 

fairness causes link underutili zation.  
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Thus, using proportional definition of fairness link i  
will be underutili zed whenever inequality (8) holds. How-
ever, maximizing utili ty fairness always utilizes the link if 
the maximum value of the interface RLR is larger than the 
interface’s capacity.  
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Inequality (9) shows that using maximizing utili ty defi-
nition of fairness the link i is underutilized only if the 
maximum requested rate on the interface is lower than the 
link’s capacity. Otherwise the link bandwidth is com-
pletely utili zed. Our simulation results support these ob-
servations. 

 
Figure 8. Link Utilization using  

Proportional fairness 
 

4.3 Examining the overhead 
We define the control load overhead caused by the LDS 

as the ratio between the total number of the data and con-
trol packets generated. Figure 9 shows how the frequency 
of the periodic path probing influences the load overhead. 
As expected, control packet overhead increases as the 
probe generation rate grows. Still , even when we raise the 
probe generation rate to 1 packet every 4 seconds, the 
overall overhead did not reach 0.8%. However, the probe 
generation rate is not the only factor that affects the over-
head. In a network with a lot of short-lived flows, RLR 
change and congestion notification messages could sig-
nificantly increase the overall load. We address this prob-
lem in the next section. 

 
Figure 9. Control packet overhead vs. Probe Generation Rate 

 

5. Scalability and per-flow QoS 
In the previous section, we have shown that the LDS 

incurs insignificant load overhead. However, in our simu-



  

lation we used a small network with fairly large flows. 
Large networks usually have a lot of short-lived, small 
flows, which activate and terminate very frequently. As a 
result, LDS may incur a noticeable amount of overhead 
due to control message exchange. Furthermore, frequent 
advertisements of RLR change and subsequent rate ad-
justments may cause extreme variation of the congestion 
level in the network, which would increase the number of 
control messages being exchanged. Thus, initiating the 
RLR change phase each time a small flow activates or 
terminates could be detrimental to the scalabili ty of LDS.  

To eliminate this problem, we propose that the ingress 
nodes request large chunks of the resources to accommo-
date frequent activation and de-activation of the small 
flows. For example, for large long-term flows, the ingress 
nodes would request RLR change each time they are acti-
vated or deactivated, but for small short-term flows, in-
gress nodes would generate RLR change requests only 
when the aggregated RLR of the small flows goes beyond 
a certain threshold. This approach would reduce the over-
all number of control messages and thus would improve 
scalabil ity of the load distribution scheme.  
 
 
 
 
 
 

 
Figure 11. Requested and active RLRs 

 

To implement this approach, we consider when the in-
gress node should advertise the RLR change of the flow 
aggregate. Let the RLR that the ingress node requested on 
the path be the Requested RLR, and the RLR that the 
flows asked for from the ingress node be the Active RLR. 
The ingress node would generate an RLR change message 
only if the difference between the Requested RLR fair 
share and the Active RLR fair share goes beyond some 
threshold value. Figure 11 shows a relationship between 
the Active and Requested RLR values. 

Introduced LDS also provides the possibil ity of imple-
menting a variety of services on a per-flow basis. In order 
to preserve such LDS properties as fairness among ingress 
nodes, high link util ization, and congestion prevention, 
the ingress nodes should use the same definition of fair-
ness throughout the network when computing their band-
width share. However, the ingress nodes may use differ-
ent and more complex policies when distributing re-
sources among the flows. Each ingress node may imple-
ment its own set of load distribution policies without in-
terfering with the policies of other ingress nodes, which 
makes LDS extremely flexible in terms of providing per-
flow QoS.   

6. Related work overview 
This paper is a direct extension and improvement of the 

work done in [4], which addresses the same problem 
through the approximation of the ingress node fair share 
based on network feedback. The approach proposed in [4] 
is less accurate in computing the fair share of ingress 
nodes, takes longer time to converge, and does not guar-
antee fair load distribution among the edge nodes under 
all network conditions. 

In [6], Kar et al provided an excellent definition of the 
dynamic rate control problem and introduced an iterative 
algorithm that solves it. In [6], individual sources adjust 
their sending rates based on the utili ty function and the 
network feedback which consists of information about the 
number of congested links on the path. However, the al-
gorithm proposed in [6] converges to the optimal values 
slowly, operates on a per-flow basis, requires sources to 
communicate their sending rates to the core routers, and 
relies on the ACK packets to carry the feedback. In cer-
tain situations, the solution proposed in [6] becomes un-
acceptable because of these features. 

Mirhakkak et al introduced a somewhat related idea in 
[10]. Their goal was to modify the resource reservation 
protocol RSVP for supporting dynamically changing QoS 
requirements in mobile ad hoc networks. The proposed 
dRSVP mechanism also assumes that each flow requests 
resources in a range. When a new flow enters the network 
and there are not enough resources to accommodate it, the 
congested link will  adjust the reservations of other flows 
in order to accept the new flow’s reservation. Unfortu-
nately dRSVP also work on a per-flow basis and thus 
does not scale well. Furthermore, it does not guarantee 
that the links in the network wil l be fully utili zed and it 
allows periods of QoS degradation.   

 The Explicit Congestion Notification (ECN) model 
[12] requires that the sources wil l reduce their rates upon 
reception of the CE marked packets. Both Explicit Con-
gestion Notification approach and simple rate control al-
gorithm [6] assume that the sources are well behaved and 
would reduce their sending rate upon congestion notifica-
tion arrival. Unfortunately in the diverse Internet envi-
ronment, we cannot be sure that all the sources will be-
have as requested. Thus neither of these approaches pro-
vides protection against denial-of-service attacks. On the 
contrary, the load distribution scheme that we have intro-
duced deals with trustworthy boundary nodes that would 
adjust sending rates regardless of the user behavior and 
thus mitigates the possibili ty of misbehaving sources 
launching a denial-of-service attack. 

The problem of admission control [3, 6-7] and con-
trolled-load services [13] is somewhat related to the issues 
discussed in this paper. However they address a slightly 
different problem of determining when a new flow could 
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be accepted into the network, while the LDS examines the 
problem of how to fairly distribute resources among the 
sources in order to accommodate the new flow’s request. 

 

7. Conclusions and future work 
In this paper we introduced a new load distribution 

scheme that allows fast and fair rate adjustment at the 
edge nodes. Our scheme requires a core node to maintain 
information about the edge nodes that send traff ic through 
its interfaces and it uses a message exchange protocol to 
distribute this information. However, the core nodes do 
not keep any per-flow information and the message ex-
change protocol does not cause too much overhead. In the 
worst case, the proposed load distribution scheme requires 
two RTTs to adjust the sending rate among the ingress 
nodes. However, it requires at most the length of the 
longest RTT to eliminate congestion in the network.  

Currently, we are further investigating the characteris-
tics of the introduced load distribution scheme. In particu-
lar, since each ingress node probes the path and requests 
RLR change independently of other nodes, we are exam-
ining the possibili ty of race conditions. In the current ver-
sion of the LDS implementation, we employ timers to 
determine the freshness of the collected information; 
however we believe that this may not be enough to solve 
the problem of race conditions. In addition, we are exam-
ining possibili ties of improving the scalabil ity of the LDS, 
building service policies for providing per-flow QoS, and 
expanding the LDS to a mobile environment. 
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9. Appendices 
Appendix A. The rate reduction at the edges 

The congestion notification message that arrives at the ingress 
node contains the list of the interfaces that experience congestion. 
Based on the IP address of each congested interface in the list, the 
ingress node identifies corresponding entries in the router table and 
updates them with the new information. After that, the ingress node 
identifies the set of flows that travels through each congested inter-
face. We define the set of flows that visit interface k as 

}|{ kff visit
k →=Φ .  

Subsequently, the ingress node computes a new sending rate for 
each flow that belongs to the set 

kΦ  starting from the last con-

gested interface in the list, which is arranged in the order from the 
closest to the most distant interface from the ingress node. Since 
each flow may visit multiple interfaces in the list, we adjust the 
sending rate of the flow only once according to the information of 
the interface that it visits last, the interface that is located the closest 
to the end of the list. If there are n congested interfaces in the list 
then the set of flows that reduce their sending rate based on the 
congestion information of the interface k is computed as follows: �

njk
jk

k

≤<

Φ−Φ=Φ    (10) 

Then the new rate for each flow f that belongs to the set kΦ  is 
computed according to equations (5) or (7) presented in Section 2. 
 

Appendix B. Determining the congestion status 
The interface k is congested if the following inequality holds: 

k

Ui

down
i

k CRR
down

>∆− ∑
∈

   (11) 

We use symbol Udown to denote the set of all the ingress nodes 
that adjust their sending rates because of the congestion down-
stream and symbol ∆Ri

down to denote the amount of bandwidth re-
leased by the ingress node i∈ Udown due to congestion.  

Interface k computes the amount of bandwidth released by the 
ingress node i due to the congestion downstream, which we call 
rate decrease, as the difference between the fair shares of the in-
gress node i before and after the RLR change phase. Equations (13) 
and (14) show how the rate decrease by the ingress node i is com-
puted for the proportional and maximizing utility definitions of 
fairness respectively. 
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We used superscript down to denote information associated with 
the downstream interfaces. We use notation Kdown to denote the set 
of the downstream interfaces that cause ingress nodes to reduce 
their sending rates. A more detailed description of the rate decrease 
computation can be found in [5]. 


