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ABSTRACT

The aurrent best effort approach to quality of service (QoS
in the Internet can nolonger satisfy a diverse \ariety of cus-
tomer service requirements, and that is why there is a need
for alternative strategies. We believe that the Internet needs
means for providing a fine-grained per-flow QoS that does
not cause network congestion and keeps overall link utiliza-
tion high. In this paper we introduce an efficient, fast and
scalable load distribution mechanism, which fairly distributes
available resources among the flows based ontheir resource
requirements. The load dstribution scheme (LDS) is imple-
mented via a message exchange protocol which maintains
high link utilization while incurring low overhead. We study
the LDS and compare two fairness mechanisms introduced
within the LDSframework using simulations in OPNET.

Keywords: Quality of service, dynamic admission control, load
distribution, network feedbad, fair rate distribution

1. Introduction.

The “one service for all” model used by the current
Internet can no longer satisfy the multitude of customer
requirements. We believe that the Internet needs is a scd-
able mechanism for providing a fine-grained per-flow
quality of service that does not cause @ngestion in the
network and keeps overall utili zation of the links high. In
author’ s opinion, one of the best ways to achieve this goal
is to introduce a load distribution scheme (LDS) at the
network boundaries. Such a scheme would require the
ingressnodes to limit sending rates of the flows based on
the cngestion level in the network.

In this paper we introduce afast, efficient, and scdable
load distribution mechanism that fairly distributes avail-
able resources among the flows based on their resource
requirements. The LDS is based on the ideathat during
congestion, an overloaded interface notifies the ingress
nodes that contribute to the angestion asking them to
reduce transmission rates of the flows. Upon receiving
congestion motification message, the ingress router com-
putes its new share of the bandwidth on the overloaded
interface and distributes it among individual flows. The
proposed LDS guarantees that each flow recaves at least
its minimum requested amount of bandwidth, while any
additional resources are shared among all flows in a fair
manner. The LDS admits a new flow into the network
only if there is enough resources to satisfy the flow’s re-

quest. The LDS is implemented using a message ex-
change protocol that retains high link utilization and in-
curs low overhea.

The LDS is most beneficial to applicaions that can tol-
erate variation of their transmission rate while still provid-
ing the end-user with an adequate level of service quality.
FTP is an example of such an applicdion; it tolerates
variation in the downloading speed but can use & much
bandwidth as the network can provide. Multimedia gpli-
cdions can also benefit from the LDS. Such applicaions
cannot operate below certain transmission rates becaise
the quality of the picture or sound becomes unrecogniz-
able; however, they can tolerate variation of the allocaed
bandwidth as long as the quality of arriving cita is ac-
ceptable to the receiver.

The rest of this paper is organized as follows. Section 2
introduces definitions of fairness while sedion 3 de-
scribes the message exchange protocol used in the LDS.
Section 4 presents simulation results and in Sedion 5 we
discuss sdability issies and examine the problem of
providing per-flow QoS within the LDS framework. Sec-
tion 6 provides an overview of the related. Finaly, we
conclude in Sedion 7 with passible future directions.

2. Fairness Definitions

In order to determine a permissible sending rate of a
flow, each boundary node maintains a Requested Load
Range, RLR = (b, B'), for the flows that enter the network
domain throughit. A flow's RLR consists of two values: a
minimum rate, b, below which the flow cannot operate
normally and the maximum rate, B, that the flow can uil-
ize The flow's snding rate, R, is limited by its RLR and
lies within this requested range. Throughout the paper we
will often refer to numerous definitions of the RLR ag-
gregates. To avoid pdential confusion we define these
aggregates as follows.

In addition to the flow RLRs, ead ingress node keeps
tradk of the path RLRs. The path RLR, (b, B), or the
RLR of the ingressnode i on the path P is aload range
where b¥ corresponds to the sum of the minimum re-
quested rates of the flows that originate from the ingress
node i and traverse the path P, while B is the sum of the
corresponding requested maximum rates. Using f - P to
denote that flow f traverses path P, we define the path
RLR asfollows:
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Similarly, we define interface and aggregated interface
RLRs for the are router interfaces. The interface RLR of
interfacek for the ingressnock i, (bik, Bik), is the sum of
the path RLRs of the ingressnode i, subject to the mndi-
tion that the paths include interfacek.
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To avoid confusion, we will use an upper-case letter
(e.g. P) for a path and a lower-case letter (e.g. k) for an
interface Finally, the aggregated interface RLR of inter-
facek, (b¥, BY), isthe sum of its interfaceRLRs.
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Ingress nodes obtain the flow RLRs from the service
level agreements established with the user, and they com-
pute the path RLRs based on these values. Each core in-
terface obtains interface RLRs from the ingress node's
advertisements and computes an aggregated interface
RLR. Ingressnodes maintain information about individual
flows (e.g. flow's RLR) and their correspording paths
(e.g. path RLRs), while the core routers maintain only
per-ingress node information (e.g. interface RLRs). A
more detailed overview of the data structures maintained
in the ingressand core nodes is provided in [4].

Congestion notification messages cary interface and
aggregated interface RLRs. These values allow ingress
nodes to fairly distribute available resource among indi-
vidual flows. In this paper we examine two definitions for
computing an ingress node’s fair share. The first defini-
tion, which we @l proportional, computes the fair share,
FS¥ of the ingressnode i proportionally to the minimum
value of its interfaceRLR on the congested interfacek:

k k
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where C¥ is the capacity of the outgoing link on interface
k. Acocording to equation (4), ead ingress node receives
its share of the interfacés cgpadty proportionaly to its
minimum requested rate on the congested interface The
fair share of each flow that contributes to the congestion
is computed in a similar way. Furthermore, the fair share
of the flow f, FS, is also propational to its minimum re-
guested rate on the angested interface:

FS' = min%" b’ B' E )
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The second dfinition of fairness computes the fair
share of an ingress node propartionally to the difference
between the maximum and the minimum requested rates,
which is the amount of bandwidth the flow needs to maxi-
mize its performance. We cdl this fairness definition a
maximizing utility fairness. Thus, the fair share on con-

gested interfacek of ingressnode i and of flow f is com-
puted as follows:

K _pk
Fsk:min%nl"+((3k—bk)Bik b'k,BikE (6)
B“-b

f ot
Fs' :min%)f +(Fs* —blk)Ek_Ek,BfE
f
:min%)f +(Ck—bk)H,BfE )

3. The message exchange protocol

The message exchange protocol consists of three dis-
tinct phases. During the first phase, cdled path probing,
the ingressnocke dtempts to lean about the current state
of a path or to lean the path itself if the route to the
flow’s destination is unknown. The probe messages col-
led the current arrival rate of the traffic and the aggre-
gated interface RLR for each traversed link. The probe
messages are generated either periodically or when a new
flow is adivated. Periodic probing is used to determine if
the ingressnode can increase its nding rate on the path,
while the probing caused by the flow activation deter-
mines if the new flow can be amitted into the network.

Admisdon of a newly adivated flow into the network
or a flow termination initiates the second phase clled the
RLR change phase. The purpose of this phase is to update
the interfaceRLRs along the flow’s path. If the admission
of the new flow causes congestion anywhere dong the
path, then the ingressnode initiates the third phase, cdled
the Rate Reduction Phase. During the third phase @n-
gested interfaces notify ingressnodes to slow down.

The message exchange protocol uses the following
message types. In the first phase, ingress nodes generate
PROBE padkets and receive results of the path probing
via PROBE_REPLY messages. In the second phase, in-
gress nodes advertise thanges using RLR_CNG padkets.
CN and CN_CORE messages are used duing the rate
reduction phase to convey information abou congested
interfaces to the ingressand core nodes respectively.

3.1 The Path Probing Phase

The purpose of the path probing is to learn the current
arrival rate and the aygregated interfaceRLR at ead link
on the path of interest. The PROBE messages are gener-
ated by an ingress node dther periodically or due to the
adivation of a new flow, and are processed by all core
routers on the path to the specified egress node. When a
core router receives a PROBE message, it retrieves infor-
mation about the interface on which the probe message
will depart. This information consists of the IP address of
the interface estimated total arrival rate, capadty, and an
aggregated interface RLR. The interface information is



stored in the body of the PROBE, and the message itself
is forwarded further along the path. The PROBE_REPLY
message that caries colleded peth information from the
egressnode bad to the ingressnode does not require any
additional processing by the @re routers.

Information colleded by the PROBE is used to update
the path state information at the ingress node. Each in-
gress node maintains threetables: a flow table, a path ta-
ble, and an interface table. The flow table @ntains infor-
mation such as the flow RLR, the current sending rate,
and the destination address of each flow. The path table
contains information about each path that is being trav-
ersed by the traffic originating from this ingressnode. The
path table entry contains the ordered list of the interfaces
that belong to the path and the list of the flows that travel
on this path. Information about ead interfaceof the path
is maintained in the interface table. An interface table
entry contains the IP address of the interface the total
arrival rate, cgpadty, and an aggregated interfaceRLR.

Once the internal tables are updeted, the ingress router
examines the cause of the PROBE generation. If it was a
periodic probe, then the ingress node examines the path
information in order to determine if there is excess band-
width available on the path. If the probe was generated
due to flow adivation, then the ingressnode cdculates the
new flow’s permissible rate and initiates the RLR change
phase. Details regarding computation of the available re-
sources on the path and new flow’s rate can be found in
[5]. They were omitted due to spaceli mitations.

3.2 The RLR change phase

The ingress node initiates the RLR change phase upon
flow activation or termination. The RLR_CNG message
generated due to flow adivation is always precealed by the
path probing phase, during which the ingress node com-
putes the sending rate of the new flow and determines if
such a rate increase will cause @ngestion anywhere on
the path. An interfacek considered to be congested if the
new flow’s rate causes the total arrival rate on the inter-
faceto be larger then its capacity: A"+ R¢ > C¥.

If addition of a new flow causes one or more interfaces
on the path to become @ngested, the ingressnode identi-
fies an interfacethat will i nitiate the rate reduction proc-
ess Such interfaceshould satisfy two conditions: it should
be mngested and it should be located the small est number
of hops away from the destination along the flow's path.
The second condition allows aggregation of congestion
notifications because the rate reduction process works
opposite to the flow of traffic on the path.

Subsequently, the ingress node generates and forwards
the RLR_CNG message which contains the RLR and the
sending rate of the new flow and the identity of the inter-
facethat will i nitiate the rate reduction process The inter-

faceidentity field is empty if there is no congestion on the
path or if the RLR_CNG is generated upon flow termina-
tion. When a are router on the flow’s path receives this
message, it updates its interface RLR and the estimated
arrival rate on the outgoing interface The core router ini-
tiates the rate reduction processif the identity of its outgo-
ing interfaceisincluded in the RLR_CNG message.

The RLR change message generated due to flow deadi-
vation causes a deaease of the interface RLR on eeach
interfaceof the path. Thisin turn causes an increase in the
fair share for each ingress node that sends traffic through
the interface However, since none of the ingress nodes
knows abou the RLR decrease, they continue sending
traffic at the rate below their new fair share, which may
result in temporary underutilization. The LDS relies on
the periodic probing instead of explicit advertisement of
available bandwidth to deal with such situation. A flow
may only increase its ending rate if each interfaceon the
path has excessbandwidth available. This information can
be obtained only by probing the path.

3.3 The Rate Reduction Phase

The Rate Reduction Phase begins when the core router
interface chosen to initiate the rate reduction process re-
caves the RLR_CNG message. We will use k to denote
this interface The ingress node that requested the RLR
change will be clled the initiator. The Rate Reduction
Phase mnsists of two steps: identifying the ingress nodes
to throttle, and generating congestion rotificaions.

3.3.1 Identifying ingress nodesto throttle

The oore router identifies the set Uy that consists of in-
gress nodes that send traffic through interfacek. The set
Uy is then divided into two subsets U™ and U, d",
cdled indirect and direct notification sets, respectively.
Ingress nodes whose traffic arives on the same incoming
link to interfacek as traffic from the initiator belong to
U while the remaining ingress nodes belong to the
set deirect: Uk _ Ukindirect.

Ingress A C1 c2 C3

EgressE

Congested

interfacek
IngressB

IngressC
Figure 1. Seledion of the dired and indired notification sets.

Figure 1 shows an example of how these sets are being
seleded. The initiator A causes congestion on the inter-
facek of the core router C2. The set Uy consists of A, B,
and C, because their traffic traverses the interfacek. The
indirea natification set, U™, contains ingressnodes A
and B and the diredt notification set, U™, contains only
ingressnode C.

Since initiator may cause mngestion on multiple links,
the indired natification set contains ingress nodes that



contribute to congestion not only on the current interface
k but passibly on other upstream interfaces. Thus, to avoid
deding with multiple congestion natifications and to re-
duce the overall number of control messages, the cre
routers aggregate information about the ingressnodes that
belong to the indired natification set. This information is
caried in a CN_CORE message to the upstream nodes.

By contrast, traffic from ingress nodes that belong to
the dired natification set does not influence the conges-
tion situation upstream but it does contribute to the mn-
gestion in the current interface k. Thus, these ingress
nodes are diredly notified through the CN message.

3.3.2 Generating congestion notifications

The CN message caries information about the n-
gested interfaces that requested a rate reduction to asingle
ingressnode in the dired notificaion set. The CN_CORE
message caries aich information to multiple (all) ingress
nodes in the indired notificaion set via other upstream
nodes. Both CN and CN_CORE messges cary the fol-
lowing information about the mngested interfaces): 1P
address interfaceand aggregated interface RLRs, and the
cgpadty. Ingressnodes that receive CN distribute the load
acording to the algorithm presented in Appendix A. Up-
stream nodes that receive CN_CORE may ned to update
the payload of the forwarded CN_CORE and newly cre-
ated CN messages.

Upstream nodes that receive the CN_CORE message
update notification padets only if the outgoing interfacej
corresponding to the link on which the CN_CORE mes-
sage arived is congested and satisfies one of the foll ow-
ing rules. The cre routers determine mngestion status of
the interfacej by comparing the link capacity with the
difference between the total arrival rate on the interfacej
and the rate reduction requested dowvnstream. For more
details e Appendix B.

Rule 1: If the rate reduction on the mngested interface;j
is larger than the rate reduction on the downstream inter-
faces, then the information about these downstream inter-
faces isreplacel with the data of the interfacej.

Rule 2: Otherwise, if the interface RLR on the n-
gested interface j is larger than that on the next-hop
downstream interface then the information about the in-
terfacej is added to the arresponding ingressnode entry
in the control messages.

Inrule 1, we define the rate reduction on interfacej to
be larger than that on interfacej’ if for the same RLR val-
ues, the interfacej causes larger rate deaease then the
downstream interfacej’. These rules apply to ead ingress
node entry separately because individual ingressnodes
may contribute to congestion on different sets of inter-
faces.

4. Simulation Results

To test and evaluate the performance of the load distri-
bution scheme, we performed a simulation study using the
OPNET network simulator [11]. The goal of our simula-
tion was to show that the load distribution scheme pre-
vents congestion in the network, maintains high link utili-
zdion, fairly distributes available bandwidth among indi-
vidual flows, and incurs a very small load overhead. We
also compare the proposed definitions of fairness and
show that the maximizing utility fairnessachieves higher
throughput in the network.

[400,1200] _SRC 1
T=185s
DEST 4

[800, 2000] DEST 4

T=[170s, 260 ]

[500, 1300]

N =[60s, 360 5]
SRC 4 DEST 2

Figure 2. Simulation Topology.

In our simulation we nsider four sources snding
multimedia traffic through the network of Figure 2,
which shows the topology used in the simulation as well
as the destination, RLR, and the timeframe of operation
for each source. For example, SRC 1 starts ®nding its
traffic to DEST 4 at time 185 seconds and finishes at the
end of the simulation. Its RLR is [400 Kbps, 1200Kbps].
Each link in the network is provisioned with 1544 Kbps.
We implemented and tested the bi-diredional version of
the LDS but in the paper we consider only a unidirec-
tional casein order reducethe complexity of discussion.

4.1 Evaluation of the congestion prevention

If the probe message indicaes that additional traffic
will not cause angestion on the path, then the new flow
can start transmitting before the RLR change message is
sent. However, if additional traffic will cause mngestion,
then the ingress node generates an RLR change message
and will allow the new flow to transmit its traffic only
when the CN message arrives. Thus, upon a new flow’'s
adivation, congestion can still occur only if the ingress
node will increase its ending rate before other ingress
nodes that contribute to congestion will slow down.
However, congestion will only last until all participating
ingress nodes recive the mngestion notificaions and
adjust their sending rates.

Ingress Flow Probe Probe Reply Congestion

node activation RLR change Notification
Ingress12| Source2 110.02 sec 110.19 sec 110.26 sec
Ingress3 | Source3 170.01sec 170.10sec 170.13 sec

Table 1.Control message exchange timing



Table 1 shows the arival and departure times of the
control padkets at the ingress nodes upon the flow’s adi-
vation. These results were @lleded using the simulation
scenario shown in Figure 2.

One wuld olserve that Ingress 3 nealed significantly
lesstime to complete the message exchange as compared
to Ingress 12. This phenomenon is explained by the fad
that Ingress 12 probes a longer path than Ingress3. Simi-
larly, bath ingressnodes waited longer for the probe reply
than for the arival of the congestion natificaion after the
RLR change. This happens because the probe has to trav-
erse a omplete round trip path, while an intermediate
core router, and nd an egress node, may generate the
congestion natification. Thus, in general, a cmmplete n-
trol message exchange initiated by a flow adivation will
last not longer than two round trip times (RTT).

Ingress Node Congestion Notification
(CN) arrival time
Ingress12 185.58 seconds
Ingress3 185.53 seconds
Ingress4 185.54 seconds

Table 2. Arrival times of CN messages due to the flow adivation

To better uncerstand haw long the mngestion may last,
let us examine what happens when SRC 1 starts €nding
traffic & T=185 semnds. Table 2 provides a list of the
congestion notification arrival times caused by the adive-
tion of SRC 1. Ingress 12, which requested the RLR
change, receives a amngestion notification and adjusts its
sending rate at time 186.507 seconds, while ingressnodes
3 and 4 receive their congestion notifications at times
186465 and 186376 seconds, respedively. Thus, in this
situation, congestion was avoided, because ingress nodes
3 and 4 were &le to reduce their sending rates before In-
gress12injeded additional traffic.

If Ingress nodes 3 and 4 would receive the congestion
notification after Ingress12, then congestion would not be
avoided. However, even in the worst case, congestion
would last only from the time of the sending rate increase
urtil the time the last ingressnode that contributes to con-
gestion receives its notification. This amourt should be
limited by the longest RTT.

4.2 Fairness schemes and link utilization

Figures 3 — 5 show how the ingress nodes adjust their
sending rates for the scenario described in Figure 2.
These results were mlleded using the maximizing utility
definition of fairness Note that throughout the simulation
the ingress nodes dhare available resources fairly. For
example, during the time period [185 sec, 260 sed the
link core 2 — core 5 is a bottlened for ingress nodes 12
and 3, while link core 5 — core 3 is the battlened for the
ingress nodes 12 and 4. As a result, available resources
are distributed as foll ows: sending rate for the Ingress12

is 682 Kbps, 862 Kbps for Ingress 3, and 648 Kbps for
Ingress 4; their fair shares at the respedive battlenecks.
However, since Ingress 12 cannot fully utilize its fair
share & the link core 5 — core 3 due to the bottlened at
core 2 — core 5, Ingress4 is able to use the excessband-
width and gadually increase its nding rate.
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Figure 3. Load distribution by the Ingress Router 12
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Figure 4. Load distribution by the Ingress Router 3
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Figure 5. Load distribution by the Ingress Router 4

Figure 6 shows utili zation of the links core 2 — core 5
and core 5 — core 3, which indicaes that for the duration
of the experiment at least one of the links was 100% util-
ized. Furthermore, even when the Ingress 12 was not able
to send traffic & its fair share on the link core 5 — core 3,
the link utilization oscil lated around 95%.



To compare performance of the proportional and
maximizing utility definitions of fairness we dlightly
modified our scenario. In the new scenario, we change
RLR of SRC 4 to [800 Kbps, 900 Kbps]. Figures 7 and 8
show link utilizetion for the different definitions of the
fairness As Figure 8 shows, propational fairness does
not utilize link resources completely during the time pe-
riod [110 seq 170sed, while the maximizing utili ty fair-
nessdoes, as shown in Figure 7.
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Figure 6. Link Utilization using
Maximizing Utility Fairness
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Maximizing Utility fairness

The proportional fairness siffers from this deficiency
because if the fair share of the ingressnode is larger than
its maximum requested rate, then the ingress node sends
traffic a its maximum requested rate and leftover band-
width is not distributed among the rest of the ingress
nodes. If FS*> B then the link will be underutilized be-
cause 5,(FS*) = C“ Let us examine when proportional
fairnesscauses link underutili zation.

CKE—'E>BfD %:>Ei: )

Thus, using proportional definition of fairness link i
will be underutili zed whenever inequality (8) holds. How-
ever, maximizing uility fairnessalways utilizes the link if
the maximum value of the interfaceRLR is larger than the
interfaces cgpacity.

b+ (c*-b¥)

k _ |k kK _ |k
2 lsgo-n)E e oo (9)

Inequality (9) shows that using maximizing utility defi-
nition of fairnessthe link i is underutilized only if the
maximum requested rate on the interfaceis lower than the
link's cgpadty. Otherwise the link bandwidth is com-
pletely utilized. Our simulation results uppat these ob-
servations.
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Figure 8. Link Utilization using
Proportional fairness

4.3 Examining the over head

We define the antrol load overhead caused by the LDS
as the ratio between the total number of the data and con-
trol padkets generated. Figure 9 shows how the frequency
of the periodic path probing influences the load overhead.
As expeded, control padcket overhead incresses as the
probe generation rate grows. Still, even when we raise the
probe generation rate to 1 padket every 4 seconds, the
overall overhea did not reach 0.8%. However, the probe
generation rate is not the only fador that affeds the over-
hea. In a network with a lot of short-lived flows, RLR
change and congestion notification messges could sig-
nificantly increase the overall load. We aldressthis prob-
lem in the next sedion.

Ik}

Conrol Load
o7 Qverhead (%)

Probe Generation
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Figure 9. Control padet overhead vs. Probe Generation Rate

5. Scalability and per-flow QoS
In the previous sdion, we have shown that the LDS
incurs insignificant load overhead. However, in our simu-




lation we used a small network with fairly large flows.
Large networks usually have alot of short-lived, small
flows, which adivate and terminate very frequently. As a
result, LDS may incur a noticeeble amount of overheal
due to control message exchange. Furthermore, frequent
advertisements of RLR change and subsequent rate al-
justments may cause extreme variation of the amngestion
level in the network, which would increase the number of
control messages being exchanged. Thus, initiating the
RLR change phase eah time asmall flow adivates or
terminates could be detrimental to the scdability of LDS.

To eliminate this problem, we propase that the ingress
nodes request large chunks of the resources to acaommo-
date frequent adivation and de-adivation of the small
flows. For example, for large long-term flows, the ingress
nodes would request RLR change e&h time they are adi-
vated or deadivated, but for small short-term flows, in-
gress nodes would generate RLR change requests only
when the aggregated RLR of the small flows goes beyond
a cetain threshold. This approach would reduce the over-
all number of control messages and thus would improve
scaability of the load distribution scheme.

Requested Active Requested RLR  ActiveRLR Requested Active
minRLR minRLR fair share fair share maxRLR maxRLR
1 1 1 1 1 1

[——»
+ + Compared with threshold f f
Bahdwidth | RLR allocated on the path |

RLR requested by the currently active flows
Figure 11 Requested and adive RLRs

To implement this approach, we @nsider when the in-
gress node should advertise the RLR change of the flow
aggregate. Let the RLR that the ingressnode requested on
the path be the Requested RLR, and the RLR that the
flows asked for from the ingressnode be the Active RLR.
The ingressnode would generate an RLR change message
only if the difference between the Requested RLR fair
share and the Active RLR fair share goes beyond some
threshold value. Figure 11 shows a relationship between
the Active and Requested RLR values.

Introduced LDS also provides the paossibility of imple-
menting a variety of services on a per-flow basis. In order
to preserve such LDS properties as fairnessamong ingress
nodes, high link utilization, and congestion prevention,
the ingress nodes should use the same definition of fair-
nessthroughout the network when computing their band-
width share. However, the ingress nodes may use differ-
ent and more complex policies when distributing re-
sources among the flows. Each ingress node may imple-
ment its own set of load distribution policies without in-
terfering with the policies of other ingress nodes, which
makes LDS extremely flexible in terms of providing per-
flow QoS.

6. Related work overview

This paper is a dired extension and improvement of the
work done in [4], which addresses the same problem
through the goproximation of the ingress node fair share
based on retwork feedbadk. The goproach propased in [4]
is less acarrate in computing the fair share of ingress
nodes, takes longer time to converge, and daes not guar-
antee fair load distribution among the edge nodes under
all network conditions.

In [6], Kar et al provided an excellent definition of the
dynamic rate control problem and introduced an iterative
algorithm that solves it. In [6], individual sources adjust
their sending rates based on the utility function and the
network feedbadk which consists of information about the
number of congested links on the path. However, the al-
gorithm proposed in [6] converges to the optimal values
slowly, operates on a per-flow basis, requires urces to
communicae their sending rates to the core routers, and
relies on the ACK padkets to cary the feedbadk. In cer-
tain situations, the solution proposed in [6] beames un-
accetable because of these feaures.

Mirhakkak et al introduced a somewhat related ideain
[10]. Their goal was to modify the resource reservation
protocol RSV P for supporting dynamically changing QoS
requirements in mobile a hoc networks. The proposed
dRSVP mechanism also assumes that ead flow requests
resources in a range. When a new flow enters the network
and there ae not enough resources to accommodate it, the
congested link will adjust the reservations of other flows
in order to accept the new flow's reservation. Unfortu-
nately dRSVP also work on a per-flow basis and thus
does not scale well. Furthermore, it does not guarantee
that the links in the network will be fully utilized and it
allows periods of QoS degradation.

The Explicit Congestion Notification (ECN) model
[12] requires that the sources will reduce their rates upon
reception of the CE marked padkets. Both Explicit Con-
gestion Notification approach and simple rate wntrol al-
gorithm [6] assume that the sources are well behaved and
would reduce their sending rate upon congestion notifica-
tion arrival. Unfortunately in the diverse Internet envi-
ronment, we cannot be sure that all the sources will be-
have & requested. Thus neither of these approaches pro-
vides protedion against denial-of-service dtacks. On the
contrary, the load distribution scheme that we have intro-
duced deals with trustworthy boundary nodes that would
adjust sending rates regardless of the user behavior and
thus mitigates the possibility of misbehaving sources
launching a denial-of-service dtad.

The problem of admission control [3, 6-7] and con-
trolled-load services [13] is omewhat related to the issues
discussd in this paper. However they address a slightly
different problem of determining when a new flow could



be acceted into the network, while the LDS examines the
problem of how to fairly distribute resources among the
sources in order to acoommodate the new flow’ s request.

7. Conclusions and futurework

In this paper we introduced a new load distribution
scheme that allows fast and fair rate ajustment at the
edge nodes. Our scheme requires a re noce to maintain
information about the edge nodes that send traffic through
its interfaces and it uses a message exchange protocol to
distribute this information. However, the cre nodes do
not keep any per-flow information and the message ex-
change protocol does not cause too much overhea. In the
worst case, the propased load distribution scheme requires
two RTTs to adjust the sending rate among the ingress
nodes. However, it requires at most the length of the
longest RTT to eliminate congestion in the network.

Currently, we ae further investigating the charaderis-
tics of the introduced load distribution scheme. In particu-
lar, since e&h ingress node probes the path and requests
RLR change independently of other nodes, we ae exam-
ining the possbility of race onditions. In the current ver-
sion of the LDS implementation, we employ timers to
determine the freshness of the colleded information;
however we believe that this may not be enough to solve
the problem of race onditions. In addition, we ae exam-
ining passibilities of improving the scalability of the LDS,
buil ding service policies for providing per-flow QoS, and
expanding the LDS to a mobile environment.
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9. Appendices

Appendix A. Theratereduction at the edges

The mngestion motification message that arrives at the ingress
node mntains the list of the interfaces that experience @ngestion.
Based on the IP address of each congested interface in the list, the
ingress node identifies corresponding entries in the router table and
updates them with the new information. After that, the ingress node
identifies the set of flows that travels through ead congested inter-
face We define the set of flows that visit interface k as
o, ={f|fOH_ k-

Subsequently, the ingress node computes a new sending rate for
eah flow that belongs to the set &, starting from the last con-

gested interface in the list, which is arranged in the order from the
closest to the most distant interface from the ingress node. Since
eah flow may visit multiple interfaces in the list, we ajust the
sending rate of the flow only once acerding to the information of
the interfacethat it visits last, the interfacethat is located the closest
to the end of the list. If there ae n congested interfaces in the list
then the set of flows that reduce their sending rate based on the
congestion information of the interfacek is computed as follows:
ok =0, - | o, (10)
k<jsn

Then the new rate for each flow f that belongs to the set ®* is

computed according to equations (5) or (7) presented in Section 2.

Appendix B. Deter mining the congestion status

The interface k is congested if the following inequality holds:

R - § AR >CK (11)
oy o

We use symbol U%"" to denote the set of all the ingress nodes
that adjust their sending rates because of the congestion down-
stream and symbol AR to denote the amount of bandwidth re-
leased by the ingress node i 7 U%"" due to congestion.

Interface k computes the amount of bandwidth released by the
ingress node i due to the congestion downstream, which we call
rate decrease, as the difference between the fair shares of the in-
gress node i before and after the RLR change phase. Equations (13)
and (14) show how the rate decrease by the ingress node i is com-
puted for the proportional and maximizing utility definitions of
fairness respectively.

ARdown - Fsbefore _ Fsaﬂer
ck bf
A down — K _pk+l) ™~ (13)

R K;m (q h ) bk bk — bf

;(Bik _ bik )_ (Bik+1 _ b|k+1)

down — K f k _pk B'-b' 14
AR - (Bk_bk)_(Bf_bf) E) +(C b )Bk_bk E( )

We used superscript down to denote information associated with
the downstream interfaces. We use notation K% to denote the set
of the downstream interfaces that cause ingress nodes to reduce
their sending rates. A more detailed description of the rate decrease
computation can be found in [5].

(12)




