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ABSTRACT While investigating fault localization techniques for FCS

FCS networks are aimed at providing a highly automated, securer?etworks’ we set the following objectives:

and survivable paradigm of battlefield operations. This goal cans Dealing with uncertainty which is indispensable when
not be achieved without an ability to rapidly isolate and correct mutual dependencies between system components are
network faults. A fault management system for FCS networks, transient or difficult to obtain or when so callesbft
which are ad-hoc and mobile, should be characterized by high (byzantine) problems have to be diagnosed.
accuracy and efficiency as well as the ability to deal with uncers Event-driven fault localizatioras opposed to window-
tainty, unreliability, and dynamism — inherent properties of such pased analysis [1, 7, 14]. In a mobile environment, post-
networks. We propose an application of Bayesian reasoning tech- poning symptom analysis until the end of time-window
niques to fault localization in FCS networks and present a fault may cause the symptoms to be analyzed using an out-
localization algorithm capable of identifying multiple simultane-  dated information about the system structure.
ous faults in an efficient and event-driven manner. The algorithrg Resilience to observation noisehich is due to lost or
provides an accurate fault hypothesis in the presence of uncertain spurious symptoms and can dramatically reduce the accu-
information about the system structure and is resilient to noise racy of the fault localization process [10, 12].
in observed symptoms. We evaluate the algorithm through sing- High accuracy and low computational complexityault
ulation in which its accuracy and performance are assessed in |ocalization in nondeterministic systems has been shown
identifying root causes of end-to-end connectivity probléms. an NP-hard problem [7]. Since an optimal solution is
likely to be prohibitively time-consuming, it is important
to design efficient yet accurate approximate techniques.

1 INTRODUCTION _ _ _ o o
This paper investigates an application of probabilistic rea-

Automatic fault localization [5, 7, 14], is known to be a soning to fault localization in FCS networks. We address
difficult problem in any circumstances. In a wireless envi-the objectives of our research by adapting known algorithms
ronment, the well known issues of environment-related deof probabilistic reasoning in belief networks [3, 8] to cre-
vice failures, inherently unreliable communication mediumate an efficient and accurate probabilistic fault localization
power supply problems, and restricted bandwidth make thgchnique. In Section 2, we present a technique of model-
fault management function even more challenging. Thejng FCS networks using belief networks [8]. In Section 3,
result in new failures to consider, higher fault frequencieswe propose a heuristic that applies the belief-updating algo-
higher symptom loss rates, increased number of transiefithm for polytrees [8] to perform event-driven diagnosis in
faults, less computing resources available, and severely raon-polytree belief networks. In Section 4, we extend the
stricted amount of management information that may be exsystem model to incorporate lost and spurious symptoms. In
changed between network nodes. In ad hoc and mobile negection 5, we present the results of the simulation study.
works, the problem is further complicated by the dynami-

cally changing topology. Yet, without the ability to rapidly

isolate and correct network faults, the highly automated, se- 2 MODELING FAULT PROPAGATION WITH

cure, and survivable paradigm of battlefield operations ex- BELIEF NETWORKS

pected of FCS networks may not be achieved. Similar to many fault localization techniques [1, 4, 14], the

technique presented in this paper relies on a graphical fault
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(DAG), in which each nod#&; represents a random variable 3 FAULT LOCALIZATION TECHNIQUE

over a multivalued domain. The set of all nodes is denoted . L

by V. The set of directed edgds denotes an existence of Recgll from Sgctlon 2 that in smglyfconnected BNS repre-
causal relationships between the variables and the strengthg"ting the noisy-or model of conditional probability distri-
of these influences are specified by conditional probabilitie2ution. Bayesian belief updating may be computed in poly-
Formally, a belief network is a paiiG, P), whereG is a nomial time [8]. BNs useq as FPMS typically are not poly-
DAG, P={P,}, andP, is the conditional probability matrix trees becagse they pontaln u'ndlrected loops [11]. We apply
associated with a random variafe We focus on a class ~€al's belief updating algorithm [8] as an approximation
of BN representing a simplified model of conditional Iorob_scheme to perform fault localization in an FPM with loops.

abilities callednoisy-OR gatg8], which contains binary- pearl's belief updating [8] utilizes a message passing schema
valued random variables and associates an inhibitory fact@ which BN nodes exchange and = messages. Message
with every cause of an effect. The effect is absent only if aII)\X(Uj) that nodeX sends to its parerit; for every valid
inhibitors corresponding to the present causes are activateg’s value v;, denotes a posterior probability of the entire
Thus, instead of conditional probability matrices associate@ody of evidence in the sub-graph obtained by removing link
with BN nodes, the noisy-OR BN assigns conditional probavj_>X that containsX, given thatl;=v;. Messagery;, ()
bility values to the BN edges. The model assumes that all inthat nodeX sends to its childJ; for every valid value ofX,
hibitory mechanisms are independent [8]. This assumption, denotes a probability that =z given the entire body of

of independence is ubiquitous in probabilistic fault |Oca|iza-evidence in the subgraph Containip@ created by remov-
tion [7, 14]. Itis known that quering a BN is, in general, jng edgeX —U;. Based on the messages received from its
NP-hard [2]. A belief updating algorithm, polynomial with parents and children, nodé computesel(z), a probability
respect tgV/|, is available fopolytreed8]. that X = z given the entire body of observed evidence, and

In a BN used as an FPM, each 0,1-valued variable represer{fgessf?‘gfg arr:d” flor Ithg nooilte’s parents and childre?, fre-
a failure of a particular system entity. An assignment of 1 oSPECtively. The calculation of messageand, and belie
0 indicates that the entity experiences or does not experienfaetricel is explained in [8].

the represented failure, respectively. Several distinct varin the initialization phase, for all observed nodés(z) is
ables may be associated with the same entity to represent #gt to 1 ifz is the observed value of. For other values of
various failure conditions [11]. The fact that a failure of one;; \(z) is set to 0. For all unobserved node&:) is set to
entity may cause a failure of another entity is represented by for all values ofz. Parentless nodes have theitz) set

a causal edge between the corresponding BN nodes, whig the prior probabilities. The belief propagation algorithm
is weighted with the probability of the causal implication. in polytrees starts from the evidence node and propagates

A symptom is defined as an observation that an entity ex® changed belief along BN edges by computiag),
periences a particular failureggativesymptom), or that it X (V) andmx (u;)s in every visited node.

does not experience this failunedsitivesymptom). We will - For the purpose of event-driven fault localization this paper
denote byS the set of all possible symptoms. i isa BN adapts the iterative belief updating as follows. The adapted
node corresponding to a failure of a system entity, then thgigorithm, APPROX-FL, starts with a BN all of whose evi-
negative and positive symptoms are interpreted as an instaflence nodes corresponding to observable symptoms are as-
tiation of V; with value 1 and 0, respectively. The sets of allsigned to 0, and all other nodes are unassigned, i.e., their
observed negative and positive symptoms will be denotef(0) = (1) = 1. Then, the algorithm proceeds in an event-
by Sy andSp, respectively. The set of all observed symp-driven manner, after every symptom observation applying
toms, So=SyUSpCS, becomes the evidence. In general,one iteration of belief updating traversing the graph accord-
SnUSp#S, as some symptoms may be unobservable. Thixg to some order. For every symptom we define a different
ratio |So|/|S| will be called arobservability ratio(OR). A ordering that is equivalent to the breadth-first order started
BN in which Sp represents the set of all observable sympfrom the node representing the observed symptom. The ini-
toms will be denoted bBN (So). tialization phase considers all observable symptoms positive

A fault is a failure of a system entity that may not be fur- and calculates fault probability distribution in the presence

ther explained with a given FPM. It is represented by thé’[)no neégart]ive observa_tions]; When a ne_gative Symptom iﬁ
assignment of 1 to the corresponding BN node. The set diPServed the propagation of negative evidence reverses the

all possible faults is denoted 1. The problem of finding '€Sults of the corresponding positive symptom analysis per-
the set of faultsF. C F that best explains the set of ob- formed in the initialization phase.

served symptom§o may be solved by computing the most The iterative belief propagation described above allows us to
probable explanation (MPE) query BV (So). obtain the marginal posterior distribution resulting from the



observation of the evidence (symptoms). We use this distriresult of using an unreliable communication mechanism to
bution to estimate the set of faults that are the most probabteansfer alarms from their origin to the management node.
causes of the observed symptoms. For this purpose, we ifieo liberal threshold values may also prevent an existing
troduce the following heuristic: (1) choose a fault node withproblem from being reported, thereby causing alarm loss.
the highest posterior probability, (2) place the correspondingVhen the fault localization algorithm relies on positive in-
fault in the MPE hypothesis, (3) mark the node as observefbrmation to create the most likely fault hypothesis, alarm
with value 1, and (4) perform one iteration of the belief prop-loss, if ignored by the algorithm, could lead to an incorrect
agation starting from the chosen fault node. Steps (1)-(43olution. Spurious alarms are caused by intermittent net-
are repeated as long as (1) the posterior distribution containgork faults or by overly restrictive threshold values.

fault nodes whose probability is greater than 0.5, and (2) urvve address the problem of lost and spurious alarms by aug-

explained negative symptoms remain. An inherent propert : ) : . :
of the adapted algorithm is the capability to isolate multiple}/nentlng the BN model described in Section 2 using the tech-

simultaneous faults even if their symptoms overlap. \?\;ﬁgfevxlegﬁwt?;etg;nsgtokf l:ael‘lt/SB:l\l{VnSéc’jé's. ,vf//ﬁigacc‘g’rr ..

Algorithm APPROX-FL spond to symptom§Sy, . .., S;, }=S. We introduce a set of
Inference iteration starting from node Y;: nodes{Vs ,..., V¢ }, which represent unobservable fail-
let o be the breadth-first order starting froii} ures. Then for every nodés, Vs and for every/; eV —Vg
for all nodes along orderingo do such that(V;, Vs,)eE we (1) remove(V;,Vs,) from E

if X is not an unobserved or positive symptom node then
compute\x (v;) for all X’s parents,V;,
and for allv; € {0,1}

and (2) add(V;, Vs, ) to E. Then, we add directed edges
Vg, —Vs,,i=1...m. With every directed edgés — Vs, we

computery, () for all X’s children, U;, associate the probability of causal relationshiio bet\/\xéfgn

and forallz € {0,1} andVs, equal tol—piess(Si), Wherepyss(.S;) is the proba-

Initialization phase: bility that alarmSS; is lost. The values ofy.ss(.S;) may be
for every symptons; € Sp do obtained, for example, by analyzing packet loss rate in the

markS; as observed to have value of 0
run inference iteration starting frorfy;
Symptom analysis phase

network used to transport sympta$ih from its origin to the
management station.

for everIZ symptgrﬁi € gN dho e of To model spurious symptoms, we introduce nodé&s,

mark 5; as observed to have value of 1 i=1...m. Then, we add directed edgég —Vs,. With

run inference iteration Startlng fl’OI’ﬂi Vi iat . beli é’ th”t
computebel (v;) for every nodd/;, v; € {0,1} everyVs we associate prior be iefpurious (Si) that repre- -

Fault selection phase sents the cumulative probability of events (other than persis-

while 3 fault nodeV; for whichbel(1)>0.5 andSy # 0 do tent faults) that trigger alarrsi;. The value ofpspurious(Si)

takeV; with the greatesbel(1) and may be learned by analyzing historical alarm log files. Every

place itin the set of detected faults, directed edgé’s — Vs, is labeled withl —pjoss (.S;).

markV; as observed to have value of 1
remove all symptoms explained Byfrom Sy
run inference iteration starting frori;
computebel(v;) for every nodéd/;, v; € {0, 1}

1-Pioss(Sy) I
Unlike other approaches to fault localization [7, 14], which
delay symptom analysis until all symptoms are collected,
algorithm APPROX-FL does not require all symptoms to be
observed before their analysis may be started. On the con-
trary, it analyzes a symptom independently of other symp- Pepurious(S1)
tom observations. The knowledge resulting from analyz- eman )
ing a symptom is stored for the next iterations in the BN V31
nodes in the form oA and= messages, allowing algorithm :
APPROX-FL to utilize time more efficiently. The complex-
ity of the entire algorithm i€ (|Sp||E]) [13]. FTTTeremrrmosssssssssssssssssossoosssssseesesseeoooocd

Figure 1: A belief network modeling lost and spurious
4 DEALING WITH NOISY OBSERVATIONS symptoms BN/ (S0, Plosss Pspurious )

In FCS networks, an observation of network state is likely tor he resultant BNBN (S0, ploss: Pspurious) IS presented in
be disturbed by the presence of lost or spurious symptonfsg. 1. Observe thaB\ (Sp, 0, 0) is equivalent to the orig-
(referred to as observation noise). Alarms may be lost asiaal BN, B/ (Sp). When the existence of either lost or spu-
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rious (but not both) alarms may be neglected, one should uskecreases DR. This is explained by the fact that in small net-
BN (S0, 0, Pspurious) or BN (So, pioss, 0), respectively. works (in particular, with small observability ratios), only

To perform fault localization that includes lost and spurio Sa few symptoms are available to the fault localization pro-
P rad Ization that Inciu PUMNOUS ess. Consequently, the algorithm refuses to identify a fault
Symptoms in the anaIySIS US”@’V(SOa plossypspurious) as

. ¢ thereby achieving very low DR. One can conclude that small
an FPM, the algorithm APPROX-FL may be applied. networks need to be better instrumented (i.e., have higher

OR) to allow fault localization to benefit from the analysis
5 SIMULATION STUDY of spurious symptoms. In larger networks, the inclusion of
spurious symptoms does not cause a decrease in the DR; in

Network connectivity is frequently achieved through a se - . .
guence of intermediate nodes. A failure of such a node magCt’ as shown in Fig. 4(a), it allows the DR to be improved.

cause availability or performance problems on one or morE!9: 4(b) presents the impact of including spurious symp-

end-to-end paths established using the malfunctioning nod™ms on the FPR. It shows that regardless of the network
Identification of a failing node, which is a critical to restor- SIZ€ P taking spurious symptoms into account, the FPR of

ing network operation, is particularly difficult when a fail- the fault localization process may be significantly decreased.

ure is byzantine or when the number of possible suspects is
large. In this fault localization problem, an FPM is a bipar- 6 CONCLUSION

m? causality gra_lph with path failures at_the heads and IInI'i'his paper investigates an application of Bayesian reasoning
failures at the tails of the edges, respectively. using belief networks [8] to non-deterministic fault diagno-
To evaluate algorithm APPROX-FL in the application toSis in FCS networks. We propose a BN as a representation
the diagnosis of end-to-end connectivity problems, wef causal relationships among system events and show that
randomly generate tree-shaped network topologies. (TH&€ fault localization problem may be solved by calculating
choice of tree-shaped network structure makes scenario getfte MPE query in BNs. We show that the approximate tech-
eration faster and easier, while not affecting the validity ofique proposed in this paper has close-to-optimal accuracy
the results [9].) We calculate two parameters that describ@nd is resilient to observation noise.

the algorithm’s accuracy: (1) detection rate, DR, defined as
the ratio of existing faults that are correctly identified, and,
(2) false positive rate, FPR — the ratio of proposed faults th
did not exist in the system in the considered scenario.

uture work will involve assessing the algorithm’s efficiency

sing wireless network simulator, investigating other (more

a(—gfﬁcient) fault localization techniques, improving the fault

localization efficiency through distributed diagnosis, design-

In the first set of experiments, we compare the accuracing efficient approximate methods of building an FPM, and
achievable with algorithm APPROX-FL and an optimal al-integrating fault localization with self-healing and network
gorithm [3]. The results of this study, which are presentedestoration mechanisms [6] to provide a comprehensive fault
in Figs. 2(a)-2(b), show that algorithm APPROX-FL offers management solution for FCS networks.
a close-to-optimal accuracy while being applicable to net-
works of much bigger size that the optimal algorithm, which REFERENCES
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Figure 2: Comparison of accuracies achievable with the optimal algorithm (1) and algorithm APPROX-FL (2).
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