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ABSTRACT

FCS networks are aimed at providing a highly automated, secure,
and survivable paradigm of battlefield operations. This goal can-
not be achieved without an ability to rapidly isolate and correct
network faults. A fault management system for FCS networks,
which are ad-hoc and mobile, should be characterized by high
accuracy and efficiency as well as the ability to deal with uncer-
tainty, unreliability, and dynamism – inherent properties of such
networks. We propose an application of Bayesian reasoning tech-
niques to fault localization in FCS networks and present a fault
localization algorithm capable of identifying multiple simultane-
ous faults in an efficient and event-driven manner. The algorithm
provides an accurate fault hypothesis in the presence of uncertain
information about the system structure and is resilient to noise
in observed symptoms. We evaluate the algorithm through sim-
ulation in which its accuracy and performance are assessed in
identifying root causes of end-to-end connectivity problems.1

1 INTRODUCTION

Automatic fault localization [5, 7, 14], is known to be a
difficult problem in any circumstances. In a wireless envi-
ronment, the well known issues of environment-related de-
vice failures, inherently unreliable communication medium,
power supply problems, and restricted bandwidth make the
fault management function even more challenging. They
result in new failures to consider, higher fault frequencies,
higher symptom loss rates, increased number of transient
faults, less computing resources available, and severely re-
stricted amount of management information that may be ex-
changed between network nodes. In ad hoc and mobile net-
works, the problem is further complicated by the dynami-
cally changing topology. Yet, without the ability to rapidly
isolate and correct network faults, the highly automated, se-
cure, and survivable paradigm of battlefield operations ex-
pected of FCS networks may not be achieved.

1Prepared through collaborative participation in the Communications
and Networks Consortium sponsored by the U. S. Army Research Lab-
oratory under the Collaborative Technology Alliance Program, Coop-
erative Agreement DAAD19-01-2-0011. The U. S. Government is au-
thorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

While investigating fault localization techniques for FCS
networks, we set the following objectives:

• Dealing with uncertainty, which is indispensable when
mutual dependencies between system components are
transient or difficult to obtain or when so calledsoft
(byzantine) problems have to be diagnosed.

• Event-driven fault localizationas opposed to window-
based analysis [1, 7, 14]. In a mobile environment, post-
poning symptom analysis until the end of time-window
may cause the symptoms to be analyzed using an out-
dated information about the system structure.

• Resilience to observation noise, which is due to lost or
spurious symptoms and can dramatically reduce the accu-
racy of the fault localization process [10, 12].

• High accuracy and low computational complexity– Fault
localization in nondeterministic systems has been shown
an NP-hard problem [7]. Since an optimal solution is
likely to be prohibitively time-consuming, it is important
to design efficient yet accurate approximate techniques.

This paper investigates an application of probabilistic rea-
soning to fault localization in FCS networks. We address
the objectives of our research by adapting known algorithms
of probabilistic reasoning in belief networks [3, 8] to cre-
ate an efficient and accurate probabilistic fault localization
technique. In Section 2, we present a technique of model-
ing FCS networks using belief networks [8]. In Section 3,
we propose a heuristic that applies the belief-updating algo-
rithm for polytrees [8] to perform event-driven diagnosis in
non-polytree belief networks. In Section 4, we extend the
system model to incorporate lost and spurious symptoms. In
Section 5, we present the results of the simulation study.

2 MODELING FAULT PROPAGATION WITH
BELIEF NETWORKS

Similar to many fault localization techniques [1, 4, 14], the
technique presented in this paper relies on a graphical fault
propagation model (FPM), which represents causal relation-
ships among events [1, 4, 14]. This causality graph may be
interpreted as a belief network with binary-valued nodes.

A belief network[3, 8] (BN) is a directed acyclic graph
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(DAG), in which each nodeVi represents a random variable
over a multivalued domain. The set of all nodes is denoted
by V . The set of directed edgesE denotes an existence of
causal relationships between the variables and the strengths
of these influences are specified by conditional probabilities.
Formally, a belief network is a pair(G, P ), whereG is a
DAG, P={Pi}, andPi is the conditional probability matrix
associated with a random variableVi. We focus on a class
of BNs representing a simplified model of conditional prob-
abilities callednoisy-OR gate[8], which contains binary-
valued random variables and associates an inhibitory factor
with every cause of an effect. The effect is absent only if all
inhibitors corresponding to the present causes are activated.
Thus, instead of conditional probability matrices associated
with BN nodes, the noisy-OR BN assigns conditional proba-
bility values to the BN edges. The model assumes that all in-
hibitory mechanisms are independent [8]. This assumption
of independence is ubiquitous in probabilistic fault localiza-
tion [7, 14]. It is known that quering a BN is, in general,
NP-hard [2]. A belief updating algorithm, polynomial with
respect to|V |, is available forpolytrees[8].

In a BN used as an FPM, each 0,1-valued variable represents
a failure of a particular system entity. An assignment of 1 or
0 indicates that the entity experiences or does not experience
the represented failure, respectively. Several distinct vari-
ables may be associated with the same entity to represent its
various failure conditions [11]. The fact that a failure of one
entity may cause a failure of another entity is represented by
a causal edge between the corresponding BN nodes, which
is weighted with the probability of the causal implication.

A symptom is defined as an observation that an entity ex-
periences a particular failure (negativesymptom), or that it
does not experience this failure (positivesymptom). We will
denote byS the set of all possible symptoms. IfVi is a BN
node corresponding to a failure of a system entity, then the
negative and positive symptoms are interpreted as an instan-
tiation ofVi with value 1 and 0, respectively. The sets of all
observed negative and positive symptoms will be denoted
by SN andSP , respectively. The set of all observed symp-
toms,SO=SN∪SP⊆S, becomes the evidence. In general,
SN∪SP 6=S, as some symptoms may be unobservable. The
ratio |SO|/|S| will be called anobservability ratio(OR). A
BN in which SO represents the set of all observable symp-
toms will be denoted byBN (SO).

A fault is a failure of a system entity that may not be fur-
ther explained with a given FPM. It is represented by the
assignment of 1 to the corresponding BN node. The set of
all possible faults is denoted byF . The problem of finding
the set of faults,Fc ⊆ F that best explains the set of ob-
served symptomsSO may be solved by computing the most
probable explanation (MPE) query inBN (SO).

3 FAULT LOCALIZATION TECHNIQUE

Recall from Section 2 that in singly-connected BNs repre-
senting the noisy-or model of conditional probability distri-
bution, Bayesian belief updating may be computed in poly-
nomial time [8]. BNs used as FPMs typically are not poly-
trees because they contain undirected loops [11]. We apply
Pearl’s belief updating algorithm [8] as an approximation
scheme to perform fault localization in an FPM with loops.

Pearl’s belief updating [8] utilizes a message passing schema
in which BN nodes exchangeλ andπ messages. Message
λX(vj) that nodeX sends to its parentVj for every valid
Vj ’s valuevj , denotes a posterior probability of the entire
body of evidence in the sub-graph obtained by removing link
Vj→X that containsX, given thatVj=vj . MessageπUi(x)
that nodeX sends to its childUi for every valid value ofX,
x, denotes a probability thatX=x given the entire body of
evidence in the subgraph containingX created by remov-
ing edgeX→Ui. Based on the messages received from its
parents and children, nodeX computesbel(x), a probability
thatX = x given the entire body of observed evidence, and
messagesλ andπ for the node’s parents and children, re-
spectively. The calculation of messagesλ andπ, and belief
metricbel is explained in [8].

In the initialization phase, for all observed nodesX, λ(x) is
set to 1 ifx is the observed value ofX. For other values of
x, λ(x) is set to 0. For all unobserved nodesλ(x) is set to
1 for all values ofx. Parentless nodes have theirπ(x) set
to the prior probabilities. The belief propagation algorithm
in polytrees starts from the evidence node and propagates
the changed belief along BN edges by computingbel(x),
λX(vi)s andπX(ui)s in every visited node.

For the purpose of event-driven fault localization this paper
adapts the iterative belief updating as follows. The adapted
algorithm,APPROX-FL , starts with a BN all of whose evi-
dence nodes corresponding to observable symptoms are as-
signed to 0, and all other nodes are unassigned, i.e., their
λ(0) = λ(1) = 1. Then, the algorithm proceeds in an event-
driven manner, after every symptom observation applying
one iteration of belief updating traversing the graph accord-
ing to some order. For every symptom we define a different
ordering that is equivalent to the breadth-first order started
from the node representing the observed symptom. The ini-
tialization phase considers all observable symptoms positive
and calculates fault probability distribution in the presence
of no negative observations. When a negative symptom is
observed the propagation of negative evidence reverses the
results of the corresponding positive symptom analysis per-
formed in the initialization phase.

The iterative belief propagation described above allows us to
obtain the marginal posterior distribution resulting from the
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observation of the evidence (symptoms). We use this distri-
bution to estimate the set of faults that are the most probable
causes of the observed symptoms. For this purpose, we in-
troduce the following heuristic: (1) choose a fault node with
the highest posterior probability, (2) place the corresponding
fault in the MPE hypothesis, (3) mark the node as observed
with value 1, and (4) perform one iteration of the belief prop-
agation starting from the chosen fault node. Steps (1)-(4)
are repeated as long as (1) the posterior distribution contains
fault nodes whose probability is greater than 0.5, and (2) un-
explained negative symptoms remain. An inherent property
of the adapted algorithm is the capability to isolate multiple
simultaneous faults even if their symptoms overlap.

Algorithm APPROX-FL
Inference iteration starting from node Yi:

let o be the breadth-first order starting fromYi

for all nodesX along orderingo do
if X is not an unobserved or positive symptom node then

computeλX(vj) for all X ’s parents,Vj ,
and for allvj ∈ {0, 1}

computeπUi
(x) for all X ’s children,Ui,

and for allx ∈ {0, 1}
Initialization phase:

for every symptomSi ∈ SO do
markSi as observed to have value of 0
run inference iteration starting fromSi

Symptom analysis phase:
for every symptomSi ∈ SN do

markSi as observed to have value of 1
run inference iteration starting fromSi

computebel(vi) for every nodeVi, vi ∈ {0, 1}
Fault selection phase:

while∃ fault nodeVj for whichbel(1)>0.5 andSN 6= ∅ do
takeVj with the greatestbel(1) and

place it in the set of detected faultsFD

markVj as observed to have value of 1
remove all symptoms explained byVj fromSN

run inference iteration starting fromVj

computebel(vi) for every nodeVi, vi ∈ {0, 1}

Unlike other approaches to fault localization [7, 14], which
delay symptom analysis until all symptoms are collected,
algorithm APPROX-FL does not require all symptoms to be
observed before their analysis may be started. On the con-
trary, it analyzes a symptom independently of other symp-
tom observations. The knowledge resulting from analyz-
ing a symptom is stored for the next iterations in the BN
nodes in the form ofλ andπ messages, allowing algorithm
APPROX-FL to utilize time more efficiently. The complex-
ity of the entire algorithm isO(|SO||E|) [13].

4 DEALING WITH NOISY OBSERVATIONS

In FCS networks, an observation of network state is likely to
be disturbed by the presence of lost or spurious symptoms
(referred to as observation noise). Alarms may be lost as a

result of using an unreliable communication mechanism to
transfer alarms from their origin to the management node.
Too liberal threshold values may also prevent an existing
problem from being reported, thereby causing alarm loss.
When the fault localization algorithm relies on positive in-
formation to create the most likely fault hypothesis, alarm
loss, if ignored by the algorithm, could lead to an incorrect
solution. Spurious alarms are caused by intermittent net-
work faults or by overly restrictive threshold values.

We address the problem of lost and spurious alarms by aug-
menting the BN model described in Section 2 using the tech-
nique we introduced in [10]. LetVS={VS1 , . . . , VSm}⊂V ,
where m=|S|, be the set of all BN nodes which corre-
spond to symptoms{S1, . . . , Sm}=S. We introduce a set of
nodes{V ′

S1
, . . . , V ′

Sm
}, which represent unobservable fail-

ures. Then for every nodeVSi∈VS and for everyVj∈V−VS

such that(Vj , VSi)∈E we (1) remove(Vj , VSi) from E
and (2) add(Vj , V

′
Si

) to E. Then, we add directed edges
V ′

Si
→VSi , i=1 . . .m. With every directed edgeV ′

Si
→VSi we

associate the probability of causal relationship betweenV ′
Si

andVSi equal to1−ploss(Si), whereploss(Si) is the proba-
bility that alarmSi is lost. The values ofploss(Si) may be
obtained, for example, by analyzing packet loss rate in the
network used to transport symptomSi from its origin to the
management station.

To model spurious symptoms, we introduce nodesV ∗
Si

,
i=1 . . .m. Then, we add directed edgesV ∗

Si
→VSi . With

everyV ∗
Si

we associate prior beliefpspurious(Si) that repre-
sents the cumulative probability of events (other than persis-
tent faults) that trigger alarmSi. The value ofpspurious(Si)
may be learned by analyzing historical alarm log files. Every
directed edgeV ∗

Si
→VSi is labeled with1−ploss(Si).

VS1 VSi VSm
... ...

VS1 VSi
VSm

... ...* * *

VS1 VSi VSm
... ...

BN(SO)

pspurious(S1)

1−ploss(S1)

pspurious(Si) pspurious(Sm)

1−ploss(Si) 1−ploss(Sm)

1−ploss(S1) 1−ploss(Si) 1−ploss(Sm)

’ ’ ’

Figure 1: A belief network modeling lost and spurious
symptoms (BN (SO, ploss, pspurious))

The resultant BN,BN (SO, ploss, pspurious), is presented in
Fig. 1. Observe that,BN (SO, 0, 0) is equivalent to the orig-
inal BN,BN (SO). When the existence of either lost or spu-
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rious (but not both) alarms may be neglected, one should use
BN (SO, 0, pspurious) orBN (SO, ploss, 0), respectively.

To perform fault localization that includes lost and spurious
symptoms in the analysis usingBN (SO, ploss, pspurious) as
an FPM, the algorithm APPROX-FL may be applied.

5 SIMULATION STUDY

Network connectivity is frequently achieved through a se-
quence of intermediate nodes. A failure of such a node may
cause availability or performance problems on one or more
end-to-end paths established using the malfunctioning node.
Identification of a failing node, which is a critical to restor-
ing network operation, is particularly difficult when a fail-
ure is byzantine or when the number of possible suspects is
large. In this fault localization problem, an FPM is a bipar-
tite causality graph with path failures at the heads and link
failures at the tails of the edges, respectively.

To evaluate algorithm APPROX-FL in the application to
the diagnosis of end-to-end connectivity problems, we
randomly generate tree-shaped network topologies. (The
choice of tree-shaped network structure makes scenario gen-
eration faster and easier, while not affecting the validity of
the results [9].) We calculate two parameters that describe
the algorithm’s accuracy: (1) detection rate, DR, defined as
the ratio of existing faults that are correctly identified, and
(2) false positive rate, FPR – the ratio of proposed faults that
did not exist in the system in the considered scenario.

In the first set of experiments, we compare the accuracy
achievable with algorithm APPROX-FL and an optimal al-
gorithm [3]. The results of this study, which are presented
in Figs. 2(a)-2(b), show that algorithm APPROX-FL offers
a close-to-optimal accuracy while being applicable to net-
works of much bigger size that the optimal algorithm, which
is not suitable networks bigger that 10 intermediate nodes
because of the excessive fault localization time.

To assess the impact of symptom loss on the accuracy of al-
gorithm APPROX-FL, we compare DR and FPR achieved
while using BNsBN (SO, LR, 0) (taking symptom loss into
account) andBN (SO, 0, 0) (disregarding the possibility of
symptom loss), varyingOR between 0.2 and 0.5. We set
SSR=0 in the simulation model. Loss rate is either0.05
or 0.1. Figs. 3(a) and 3(b) show that, by including loss rate
in the analysis, the detection (false positive) rate may be in-
creased (decreased) by up to 10%.

The impact of including spurious symptoms in the fault
localization process is evaluated by applying algorithm
APPROX-FL to FPMsBN (SO, 0, SSR) andBN (SO, 0, 0)
usingLR=0, andOR=0.5. We varySSR between 0.01
and 0.1. As shown in Fig. 4(a), the inclusion of spurious
symptoms in the fault localization process in small networks

decreases DR. This is explained by the fact that in small net-
works (in particular, with small observability ratios), only
a few symptoms are available to the fault localization pro-
cess. Consequently, the algorithm refuses to identify a fault
thereby achieving very low DR. One can conclude that small
networks need to be better instrumented (i.e., have higher
OR) to allow fault localization to benefit from the analysis
of spurious symptoms. In larger networks, the inclusion of
spurious symptoms does not cause a decrease in the DR; in
fact, as shown in Fig. 4(a), it allows the DR to be improved.
Fig. 4(b) presents the impact of including spurious symp-
toms on the FPR. It shows that regardless of the network
size, by taking spurious symptoms into account, the FPR of
the fault localization process may be significantly decreased.

6 CONCLUSION

This paper investigates an application of Bayesian reasoning
using belief networks [8] to non-deterministic fault diagno-
sis in FCS networks. We propose a BN as a representation
of causal relationships among system events and show that
the fault localization problem may be solved by calculating
the MPE query in BNs. We show that the approximate tech-
nique proposed in this paper has close-to-optimal accuracy
and is resilient to observation noise.

Future work will involve assessing the algorithm’s efficiency
using wireless network simulator, investigating other (more
efficient) fault localization techniques, improving the fault
localization efficiency through distributed diagnosis, design-
ing efficient approximate methods of building an FPM, and
integrating fault localization with self-healing and network
restoration mechanisms [6] to provide a comprehensive fault
management solution for FCS networks.2
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