
BATTLEFIELD APPLICATIONS OF HIERARCHICAL

MANAGEMENT WITH SHAMAN

Adarshpal S. Sethi

Pramod Kalyanasundaram

Christopher M. Sherwin

Dong Zhu

Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716

fsethi, kalyanas, sherwin, dzhug@cis.udel.edu

ABSTRACT

E�ective management of battle�eld networks re-
quires a hierarchical network management archi-
tecture wherein managers can dynamically delegate
management tasks to intermediate managers. In
this paper we describe a novel framework called
SHAMAN - Spreadsheet-based Hierarchical Architec-
ture for MANagement - which extends the traditional
at SNMP management model to a hierarchical ar-
chitecture. We describe in detail the scripting lan-
guage and event model used by SHAMAN, and illus-
trate its use by an example of location management
in a tactical battle�eld scenario. A demo of our im-
plementation of SHAMAN and the location manage-
ment application will be shown during the ATIRP
Annual Conference.

Keywords: Network Management, Hierarchical
Management, SNMP, Tactical Internet, Location
Management.

INTRODUCTION

A hierarchical management strategy is an e�ective
means of managing the large and complex internet-
works that are in use today [1]. The need for hier-
archical management is particularly acute in tacti-
cal battle�eld networks which are expected to have
tens of thousands of nodes. The Force XXI Battle
Command Brigade and Below (FBCB2) of the PM
Appliqu�e in its System Requirements Review [2] has
identi�ed a hierarchical management strategy for the

Prepared through collaborative participation in the Ad-
vanced Telecommunications/Information Distribution Re-
search Program (ATIRP) Consortium sponsored by the U.S.
Army Research Laboratory under the Federated Laboratory
Program Cooperative Agreement DAAL01-96-2-0002.

management of the Tactical Internet as the Army
War-Fighter Experiment transitions to its expanded
future system versions 2, 3, and 4. In this new man-
agement approach, management information will be
summarised at each level of the hierarchy and will
ow upwards through the Platoon, Company, Bat-
talion, and Brigade levels to the ISYSCON platform.
Every FBCB2 node will have the ability to activate
a net manager function so that there is no single
point of failure. Although currently mainly monitor-
ing functions have been identi�ed, the management
structure will likely grow to include control function-
ality as well.

Unfortunately, the most popular management frame-
work in use today, the SNMP framework (which
includes both the SNMP and the SNMPv2 proto-
cols) [3], [4], [5], only supports the at management
model. The framework provides no means for man-
agers to delegate tasks to intermediate managers or
for peer-to-peer communication between intermedi-
ate managers during the execution of these tasks.
The FBCB2 management strategy uses SNMP since
it is based on the Internet protocol suite and is there-
fore limited by these weaknesses of SNMP.

While the management community in general has
tried to design management strategies based on
the concept of Management by Delegation (MbD)
[6], [7], the SNMP community has not yet been
able to take advantage of it because the delega-
tion primitives have not been integrated with the
SNMP framework. Our research group in net-
work management at the University of Delaware
has designed an integrated framework for hierar-
chical management called SHAMAN (Spreadsheet-
based Hierarchical Architecture for MANagement)

Manager Subsystem

Back-end

Interpreter

SNMP

SNMP

Spreadsheet

Event Model

Intermediate Manager

Function
 IM

 Module

 MIB

 Polling

 Agent

Fig. 1. Prototype Implementation of SHAMAN

that incorporates management by delegation con-
cepts into the SNMP framework to facilitate the
management of distributed systems [8], [9], [10]. This
architecture allows a manager to delegate routine
management tasks to an intermediate manager and
facilitates user con�gurability of management infor-
mation and control in a value-added manner. This is
achieved by providing a scripting MIB and language
specially designed for management tasks in SNMP.

In our paper at the First ATIRP Annual Conference
last year [11], we described the motivation for and
the basic principles behind the spreadsheet-based
architecture and presented the structure of a pro-
posed implementation (Figure 1). This �gure in-
cludes the various modules that constitute the In-
termediate Manager (IM) which is at the heart of
the concept behind SHAMAN. Considerable progress
has been made in the past year on the design of
the Spreadsheet Scripting Language (SSL) and an
Event Model for use in this language. We now have
a prototype implementation of SHAMAN available
for demonstration at the Second Annual Conference.

In this paper, we describe some of the design fea-
tures of the scripting language and event model used
in SHAMAN. We illustrate the use of the language
with an example of a hypothetical scenario of loca-
tion management for mobile nodes in a battle�eld
network. Consider a group of nodes that individu-
ally move on a battle�eld according to the needs of
the situation. Each node has an SNMP-manageable
MIB with the following variables:

� xPosition with the x coordinate of the current node
position,

Top-level Manager

IM 1 IM 2

Fig. 2. Hierarchical Location Management for Mobile

Nodes in a Battle�eld Network

� yPosition with the y coordinate of the current po-
sition,
� remFuel indicating the amount of fuel remaining in
the vehicle,
� remAmmo as the amount of ammunition remain-
ing.

Each node requires to be periodically monitored by
a manager who keeps track of the current location of
the node and the amounts of fuel and ammunition
left, and which may take appropriate action if these
amounts fall below speci�ed limits.

The total number of such nodes to be managed may
be too large for a single manager to handle. More-
over, there may be distance constraints so that we
may wish to have a node be managed by a manager
that is located close by. Figure 2 depicts a hierar-
chical management solution using the SHAMAN ap-
proach that is appropriate for this situation. We des-
ignate two Intermediate Managers, named IM1 and
IM2, with management authority over nodes that are
within their spheres of communication as shown by
the circles in the �gure. Each IM periodically polls
each node within its management domain to obtain
its current variable values. If any action is required
for the fuel or ammunition, then the top-level man-
ager is informed.

As the nodes in this system move around, they may
migrate from the management domain of one IM
to the domain of the other. This may necessitate

a \hando�" of the management authority over this
node to the second manager. The need for a hando�
may be detected by the IM responsible for each node.
Each time a node's location is polled, it can be deter-
mined if the node has entered an intermediate zone
(shown in the �gure as the intersection of the two
management domains). If it has, and if it is rapidly
moving towards the second zone, the top-level man-
ager is informed who then initiates the hando� of the
node to the second IM.

Even though the example presented here is some-
what simplistic and a real-life situation has to con-
sider other factors such as failures of intermediate
managers, it serves to illustrate the power and util-
ity of hierarchical management. This example has
been programmed into SHAMAN in the form of a
demo that will be displayed during the Annual Con-
ference.

SPREADSHEET LANGUAGE (SSL)

A language that targets a network management envi-
ronment must be able to support features that facil-
itate the speci�cation of network management tasks
coupled with user exibility and expressive power
[12]. This section describes the main features of the
spreadsheet language (SSL) that forms an integral
part of the spreadsheet paradigm and supports the
development of network management scripts.

SSL supports features that can be broadly classi�ed
as: 1) standard procedural language features and 2)
spreadsheet paradigm speci�c features. The stan-
dard procedural language features include: operators
(arithmetic, logical and relational), control ow con-
structs, expression evaluation and assignment, and
local variable support within a cell. The paradigm-
speci�c features include: cell access, managed object
and polling speci�cation, multiple values in cells (or
customizable views), and event speci�cation.

SSL supports standard arithmetic operators like `+',
`-', `/', `*' and relational operators like greater than
(`>'), less than (`<'), and not equal to (`<>'). Cells
and numbers can be used in arithmetic and relational
operations. SSL supports logical-and (&&), logical-
or (jj) and logical-not (!) operators. All these oper-
ators allow the user to specify relationships between
any set of arbitrary objects within the management

domain.

Control ow constructs like if...else...endif and
while allow a user to set up conditional and iter-
ative scripts in cells. The semantics of these con-
structs are similar to that of a standard procedural
language. However, iteration has an implicit, user-
con�gurable, maximum loop count that ensures that
a single script will not run forever.

The language is tightly coupled to the spreadsheet
structure used by SHAMAN and o�ers facilities to
access and manipulate cells. A user can specify
cells using a [spreadsheet:row:col] speci�cation; thus,
[1:2:3] would refer to a cell that occupies the second
row and third column in the �rst spreadsheet. The
language also supports assignments to cells. This al-
lows cells to be cleared and copied. In addition, the
SSL allows cells to be named (labeled) and the sym-
bolic names to be used in scripts. Each cell supports
a set of special local variables for temporary storage
during script processing.

An important feature supported by the SSL is that it
allows a user to set up and access multiple managed
objects in a cell. A user can specify a list of objects
to indicate that multiple values must be stored in
the cell. Each individual value can be accessed using
[s:r:c].n where n represents the nth value in the cell.
Within a given cell, the notation $$.n is used to re-
fer to the nth value of the cell. For example, in the
location management example, suppose the domains
of the two Intermediate Managers are de�ned, for
simplicity, as separated by vertical lines. The com-
mon, overlapping portion of the domains might, for
instance, be delineated by x = 380 and x = 500.
We might set up two cells containing these constants
as follows:

cell[1,1]:
label: IM1Domain;
init: $$.1 = 380;

cell[1,2]:
label: IM2Domain;
init: $$.1 = 500;

The SSL permits a user to specify a fully quali�ed
managed object in both symbolic and dotted decimal
format. A fully quali�ed managed object is a com-

bination of both the OID (Object Identi�er) of the
managed object and the host on which it resides. For
instance, suppose a mobile node in our example tac-
tical battle�eld network has the name roamer, then
the script in a spreadsheet cell can refer to the MIB
variable remFuel in this node as remFuel@roamer.
This feature allows the user to identify and access
any managed object in the management domain. A
user can optionally specify a polling interval for a
managed object. This option allows the variable to
be polled at the user-speci�ed frequency instead of a
default frequency. The following cell sets up a set of
polls to the MIB variables of the node roamer; note
that the values obtained from the polls are stored in
the four internal values of the form $$.n.

cell[2,0]:
label: PollingCell;
init: poll xPosition@roamer; // sets $$.1

poll yPosition@roamer; // sets $$.2
poll remFuel@roamer; // sets $$.3
poll remAmmo@roamer; // sets $$.4

The SSL allows dynamic con�guration of a spread-
sheet using the activate and deactivate statements.
Using these statements, a user can enable or disable
the script contained in a cell. The following two cells
illustrate these operations:

cell[3,0]: // Manager executes this cell to stop polling
label: DisableNode;
action:

deactivate [PollingCell];

cell[3,1]: // Manager executes this cell to start polling
label: EnableNode;
action:

activate [PollingCell];

The top-level manager can get an Intermediate Man-
ager to either start or stop the polling of node roamer
by executing the appropriate cell above. The script
contained in a cell that is deactivated cannot be ex-
ecuted unless it is activated again. A cell cannot be
activated or deactivated when the script in the cell
is executing.

EVENT MODEL

The SNMP framework is predominantly syn-
chronous. The primary source of asynchronous pro-

cessing is the use of traps from the agent to the man-
ager. This section describes the event model used by
SHAMAN that provides enhanced support for asyn-
chronous processing.

Events form the basis for SHAMAN's event model.
An event is an occurrence that causes: 1) a change
in the control or data part of one or more cells 2)
a system related change (e.g., a timer tick, SNMP
PDU receive or send) or 3) the execution of one or
more cells in a spreadsheet.

Events can be either basic or user-de�ned. Basic
events are intrinsic to the event model and are ei-
ther SNMP or system related. These events form the
basic building blocks for an event hierarchy. User-
de�ned (or derived) events are those events that are
built using a combination of basic and other user-
de�ned events. Some of the basic events supported
by the event model are: mgrget, mgrset, event-
get, timer, poll, activate and deactivate. Of these,
all events except activate and deactivate are system
events and cannot be generated by the user. Other
basic events are generated by cells in the spreadsheet.
These include value change, event occurred, invalid
value and error event. These events are generated
when the speci�ed condition occurs within the cell.
When an event occurs, the event id and event speci�c
details are made available to the receiving cell.

Mgrget and Mgrset events are generated when Get
or Set Requests are received from the manager. An
eventget event is generated when, as part of event
processing, a request is made for executing the script
contained in a cell. A timer event is generated on ev-
ery clock tick. A user can optionally specify a time
value as part of the timer event speci�cation. For ex-
ample, timer(5) implies that the event condition will
be triggered every 5 seconds. This feature is use-
ful to perform the periodic, repetitive tasks that are
typical in network management applications. A poll
event is generated when a poll response is received
by the IM for an OID that is contained in a cell. The
poll event contains the new value of the variable.

To support the event model, all cells in a spreadsheet
can support both event generation and event receipt.
However, cells are in general divided into two cate-
gories: event-based cells and executable cells. The
control part of an event-based cell is composed of

two parts: an implicit or explicit event-speci�cation
part (or event expression) and an action part. The
event-speci�cation part acts as a �lter that looks for
one or more events to have occurred before executing
the action part of the cell. The general structure of
such a cell is:

on: <event_expression> ';'

action: <SSL_Statement_block>

where <event expression> speci�es the event that
triggers execution of the block of SSL statements
contained in the action part. The event expression
could be a basic event or a derived event and is sim-
ilar to a boolean expression. Derived events are ob-
tained by combining basic or other derived events
using the boolean operators de�ned in SSL (i.e., jj,
&&, !).

To continue our location management example, the
cell below contains an event speci�cation [Polling-
Cell] that causes the action part of this cell to be
executed whenever the values in PollingCell change.
Recall that PollingCell is the label of cell[2,0] which
was set up to poll the MIB variables of node roamer.

cell[4,0]:
label: HistoryCell;
init: $$.1 = 0; $$.2 = 0; $$.3 = 0; $$.4 = 0;

on: [PollingCell];
action:

$$.1 = $$.3; // save old x value
$$.2 = $$.4; // save old y value
$$.3 = [PollingCell].1; // copy new x value
$$.4 = [PollingCell].2; // copy new y value

Executable cells allow a manager to request the exe-
cution of a script and return the value of the cell that
results from the execution of the script. This is a
synchronous operation and corresponds to the tradi-
tional SNMP framework manager-agent interaction
except that a down-loaded script is executed on the
IM before a value is returned. In an executable cell,
the mgrget and eventget basic events are automati-
cally enabled. Thus, a cell containing executable SSL
statements could be executed both by manager re-
quest and as part of event processing. A variation on
this is the timed-execution cell that permits a user to
set up a periodic execution of a cell based on some

time criteria. Cells [3,0] and [3,1] described in the
previous section are examples of executable cells.

Below is the �nal cell of the location management
example that executes each time there is a change
in the values of HistoryCell. The computation per-
formed in the action part of this cell is at the heart
of the location management function executed in the
IM that is responsible for managing a given node.
The value of the cell, $$.1, contains the current sta-
tus for this node, with 1 indicating that IM1 is re-
sponsible for managing it, 2 indicating that IM2 is
responsible, while 3 indicates that the node has en-
tered a transition zone (in the overlapping part of
the management domains). When the node enters
the transition zone, if it is traveling fast (indicated
by a large change in its x-position), management re-
sponsibility is immediately transferred by changing
the status to 2. Otherwise, we wait until the node
has reached the end of the transition zone. If the
status of the node changes to 2, the top-level man-
ager may be informed by an SNMP trap (not shown
here) so that appropriate changes may be e�ected in
the spreadsheets of the two IMs. For instance, the
polling of this node by IM1 may be disabled while
polling by IM2 may be enabled.

cell[5,0]: // status of node roamer
label: NodeStatus;
init: $$.1 = 1; // initially IM1's domain

on: [HistoryCell];
action:

if ([HistoryCell].3 > [IM2Domain].1)
then

$$.1 = 2; //change to IM2's domain
else

if (($$.1 == 3) &&
([HistoryCell].3 - [HistoryCell].1) >= 100)

then // traveling fast towards IM2's domain!
$$.1 = 2;

else
if (([HistoryCell].3 > [IM1Domain].1)
then

$$.1 = 3; //enter transition zone
endif;

endif;
endif;

CONCLUSIONS

In conclusion, we have presented a description of the
scripting language and event model used for hierar-
chical management by SHAMAN, and have explored
the application of this framework to the problem of
location management in battle�eld networks. This
is a powerful framework that allows delegation of
routine management tasks to intermediate managers
and relieves the top-level manager of these responsi-
bilities.

A prototype implementation of SHAMAN is cur-
rently in progress. The implementation includes a
graphical user interface that can be used by a man-
ager to construct, load and execute scripts in the
Intermediate Manager. The location management
application has been implemented on this prototype
and is available for demonstration during the Con-
ference. We will be working during the next year to
complete the prototype implementation and explore
the location management application in more detail.
We will particularly try to include more realistic bat-
tleground features into this application. During the
subsequent years, we plan to move our implementa-
tion to the ARL Testbed to assess its performance in
an environment with real mobile nodes.

The views and conclusions contained in this docu-
ment are those of the authors and should not be in-
terpreted as representing the o�cial policies, either
expressed or implied, of the Army Research Labora-
tory or the U.S. Government.

REFERENCES

[1] A.S. Sethi, Y. Raynaud, and F. Faure-Vincent,
editors. Integrated Network Management IV.
Chapman and Hall, London, 1995.

[2] Force XXI Battle Command Brigade and Below
(FBCB2), PM Appliqu�e, System Requirements
Review II, February 1997.

[3] J. D. Case, M. S. Fedor, M. L. Scho�stall, and
C. Davin. Simple Network Management Protocol
(RFC 1157), May 1990.

[4] J. Case, K. McCloghrie, M. Rose, and S. Wald-
busser. Protocol Operations for Version 2 of
the Simple Network Management Protocol (SN-
MPv2) (RFC 1905), January 1996.

[5] M. T. Rose and K. McCloghrie. Structure and
Identi�cation of Management Information for
TCP/IP based internets (RFC 1155), May 1990.

[6] Y. Yemini, G. Goldszmidt, and S. Yemini. Net-
work Management by Delegation. In I. Krish-
nan andW. Zimmer, editors, Integrated Network
Management II, pages 95{107. North Holland,
Amsterdam, 1991.

[7] K. Arai and Y. Yemini. MIB view language
(MVL) for SNMP. In A.S. Sethi, Y. Raynaud,
and F. Faure-Vincent, editors, Integrated Net-
work Management IV, pages 454{465. Chapman
and Hall, London, 1995.

[8] P. Kalyanasundaram, A.S. Sethi, and C. Sher-
win. Design of A Spreadsheet Paradigm for Net-
work Management. In Proceedings of the 7th
IFIP/IEEE Workshop on Distributed Systems:
Operations and Management, L'Aquila, Italy,
October 1996.

[9] P. Kalyanasundaram, A.S. Sethi, C. Sherwin,
and D. Zhu. A Spreadsheet-based Scripting En-
vironment for SNMP. In A. Lazar, R. Saracco,
and R. Stadler, editors, Integrated Network
Management V, pages 752{765. Chapman and
Hall, London, 1997.

[10] A.S. Sethi, P. Kalyanasundaram, C. Sherwin,
and D. Zhu. A Hierarchical Management
Framework for Battle�eld Network Manage-
ment. In To appear in Proceedings of MIL-
COM '97, IEEE Military Communications Con-
ference, Monterey, CA, November 1997.

[11] A.S. Sethi, P. Kalyanasundaram, C. Sherwin,
and D. Zhu. A Spreadsheet-Based SNMP
Scripting Environment for Battle�eld Network
Management. In Proceedings of the First
ARL/ATIRP Annual Conference, pages 251{
256, College Park, MD, January 1997.

[12] D. Holden. Predictive Languages for Man-
agement. In Integrated Network Management
I, pages 585{596. North Holland, Amsterdam,
May 1989.

