DEBUGGING SCRIPTING APPLICATIONS FOR BATTLEFIELD
NETWORK MANAGEMENT

Adarshpal S. Sethi
Dong Zhu

Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716
{sethi, dzhu}@cis.udel.edu

I. Introduction

Our research over the past three years of the ATIRP
Consortium has resulted in the design and imple-
mentation of a hierarchical network management sys-
tem called SHAMAN (Spreadsheet-based Hierarchi-
cal Architecture for MANagement). This system in-
corporates management by delegation concepts [1]
into the Internet management framework of SNMP
to facilitate the management of distributed systems
[2], [3], [4]. This architecture allows a manager to
delegate routine management tasks to an intermedi-
ate manager by providing a scripting MIB and lan-
guage specially designed for management tasks in
SNMP. This is an effective and powerful manage-
ment strategy for battlefield networks which are ex-
pected to have tens of thousands of nodes. Our pa-
per at the First ATIRP Annual Conference [5] de-
scribed the motivation for and the basic principles
behind the spreadsheet-based architecture and pre-
sented the structure of a proposed implementation
for SHAMAN. In a subsequent paper at the Second
ATIRP Annual Conference [6], we described the ap-
plication of the SHAMAN system to the problem of
location management for mobile nodes in a battle-
field network. Both the prototype implementation of
SHAMAN and a demo of the location management
application were demonstrated at that conference.

Network management script delegation as the ma-
jor means of Management by Delegation (MbD) has
now been widely accepted by the network manage-

Prepared through collaborative participation in the Ad-
vanced Telecommunications/Information Distribution Re-
search Program (ATIRP) Consortium sponsored by the U.S.
Army Research Laboratory under the Federated Laboratory
Program Cooperative Agreement DAALQ01-96-2-0002. The
U.S. government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation thereon.

ment research community and the industry. Many
scripting frameworks have been proposed. Stan-
dards activities include DISMAN Scripting MIB [7]
for SNMP management and Command Sequencer
[8] for OSI management. Research prototypes other
than SHAMAN include AMO [9] and GAS [10] for
TMN management. As the result of these script-
ing framework activities and, more importantly, the
increasing number of network management applica-
tions and the demand for them, more sophisticated
distributed network management scripting applica-
tions are emerging. This has raised the important
issue of debugging these scripting applications. Un-
til now, the issue has been largely ignored by the
network research community.

Management scripting applications are distributed
applications. People have been working on the prob-
lem of distributed program debugging for many years
and have proposed many solutions using various ap-
proaches and techniques. Of these techniques, sim-
ulation replay [11], instant replay [12], and event-
based behavior modeling [13] are the most prominent
ones. It is natural that the first step towards solv-
ing the problem of debugging management scripting
applications is to see if we can adopt some of these
solutions. In this process, it is important to find out
the peculiarities of the management script applica-
tions, and evaluate the solutions accordingly.

Another important issue is finding a good debug-
ger architecture. Since the scripting framework has
many functions needed for debugging, we think it
is beneficial to have a debugging architecture inte-
grated with the scripting framework in order to limit
function duplications.

The purpose of this paper is to define the problem
of debugging management scripting applications and

evaluate the approaches and techniques used for gen-
eral distributed program debugging in the context of
management scripting applications. We propose a
simple approach for debugging management script-
ing applications. We also propose a debugger archi-
tecture which is integrated with the scripting frame-
work. It is our hope that this architecture will allow
better and easier debugging for management appli-
cations such as those that are likely to be developed
for battlefield management.

II. Role of Scripting in Network
Management Applications

Delegating scripts is the major means used to trans-
fer management functions dynamically from manag-
ing systems to managed systems in order to take ad-
vantage of the increased computational power in the
network elements and decrease pressure on network
management centers (NMCs) and network band-
width. Generally, Script Delegation works in the
following way: a delegation manager downloads a
set of management scripts which describes its de-
sired management actions to a delegation agent at
a remote location, and asks the scripts to be exe-
cuted there. An interpreter in the agent then exe-
cutes the scripts, and the result is conveyed back to
the manager. This management scheme is illustrated
in Figure 1. A scripting framework is used to pro-
vide mechanisms and an environment to make this
management scheme possible. We describe briefly
the essential components of a scripting framework in
the following paragraphs. The interested reader may
refer to [14] for a more detailed discussion. These
components are: script management, scripting lan-
guage and interpreter, and script execution environ-
ment. Scripting management deals with the follow-
ing aspects of the framework: delegation roles, script
administration, script transfer, and script execution
monitoring and control.

The players in the scripting framework are delega-
tion managers (DM) and delegation agents (DA).
The DM is the delegator of the scripts; the DA is
responsible for the execution of the scripts on behalf
of the DM. DMs and DAs have many-to-many re-
lationships: a DM may delegate scripts to multiple
DAs; a DA may execute scripts delegated from mul-
tiple DMs. The DM and DA may or may not be the
management framework manager and agent respec-

tively, although, in an integrated environment, it is
very likely that DM and DA are at the same time
the management framework manager and agent.

A management script is a set of instructions written
in a scripting language, and specifies a management
task; the interpretation of the script will carry out
that task. However, sometimes in order to specify
one management task, a set of scripts may be needed;
in this case, the interpretation of the set of scripts
will carry out the management task.

A well-designed scripting framework should provide
good script administration mechanisms to avoid in-
troducing new management problems. In order to
achieve this, scripts may be assigned names for iden-
tification purposes; different scripts with the same
name may be assigned different versions. Moreover,
access control mechanisms may be provided for script
access and execution.

Script transfer is the physical transportation of man-
agement scripts from a DM to a DA via some transfer
mechanisms. Repeatedly executed scripts should be
stored at the DAs when they finish execution. Script
execution results may need to be stored locally and
later processed by other scripts; or they may need to
be transferred back to and examined by the DM. Re-
sults should be structured appropriately to facilitate
the processing by the DMs or other scripts.

Delegated management tasks need management
themselves. Script execution monitoring and control
deals with the issues related to the monitoring and
control of the progress of the delegated management
tasks. The ezxecution environment provides services
for script executions: translation service translates
the scripts to a required form before they are exe-
cuted; management information access service pro-
vide MIB access and communications support; execu-
tion service provides multi-threaded execution, syn-
chronization, and other services related to the execu-
tion of scripts; error handling service provides both
static and runtime error handling.

The Scripting Language (SL) is defined as the lan-
guage in which a management script is expressed.
The use of the word “scripting” does not necessarily
mean that the scripts are interpreted; actually, they
could be compiled and directly executed on the tar-

delegation manager

scripts written in a scripting language

delegation agent

\ scripts execution results

J execution control information (

/ execution monitoring information

\ execytion environment

Fig. 1. Script Delegation

get machine. We use the word “scripting” to refer to
the language’s characteristics of being highly capable
and expressive, extensible, portable, interactive, and
easy to debug.

A management scripting application is a distributed
network management application which is composed
of distributed processes and functions including
scripts and their scripting framework, management
managers and agents and their management frame-
work, and other non-standard network management
processes and protocols. All these processes and
functions cooperate to accomplish the distributed
network management task the application is written
for.

III. Distributed Program Debugging

Most distributed program debugging techniques are
based on or can be found in sequential program de-
bugging. The solution for sequential program de-
bugging is well established. The classic approach to
sequential program debugging is called cyclical de-
bugging. To debug using this approach, a sequential
program may be executed multiple times. Because
of the deterministic nature of sequential programs,
the same behavior of the program is guaranteed to
repeat with each execution. During the executions,
the user is free to stop the program execution to ex-
amine the program state by using breakpoints, to
single-step the program, or to do other things to help
debugging.

As compared to debugging sequential programs, sev-
eral difficulties arise in debugging distributed pro-
grams. This is because of the following characteris-
tics of distributed programs: multiple asynchronous
processes; multiple processors; variant communica-
tion delays; and non-existent or undefinable global
state. Because of these characteristics, race condi-
tions may exist in executing distributed programs

causing non-deterministic behavior, and repeated ex-
ecutions of a distributed program may not yield the
same results. Therefore, it is more difficult to apply
the cyclical debugging technique in debugging dis-
tributed programs.

A few approaches have been proposed to solve this
problem [15]. The simplest approach is to take snap-
shots of an execution of the distributed program and
analyze the trace after the execution ends. The ad-
vantage is that only one execution is needed. Actu-
ally, an even simpler approach is to just display the
execution at run time without actually recording the
snapshots. Since successive executions may not re-
veal the same erroneous behavior, or any erroneous
behavior at all, the disadvantage of this approach
is that all information needed to debug the program
must be collected during one execution. The amount
of information tends to be very large and is difficult
for users to sort through.

The most important approach is to make it possi-
ble to apply the cyclical debugging technique to dis-
tributed programs. The key idea of this approach
is to deterministically replay an execution. In order
to do this, certain amount of information must be
collected during the initial execution which is called
the monitoring phase or the recording phase. This
technique is therefore called record-replay technique.

Depending on how the replay is to be carried out,
there are two different techniques. Omne technique,
which we call simulation replay [11], involves replay-
ing only a subset of all processes and simulating the
others for the purpose of replaying this interesting
subset. In order to do this, during the monitoring
phase, all interactions between the processes must
be recorded together with the contents of the inter-
actions. During the replay phase, only the interest-
ing processes are replayed. The interactions between

the processes are simulated in the sense that they
are not actually carried out. The advantage of this
technique is its ability to only replay the interesting
processes. The disadvantage is that the amount of
information that needs to be recorded is large, since
we must also record the contents of each interaction
between the processes.

The other technique is called instant replay [12]. The
difference between this one and the simulation re-
play technique is that only the interactions between
the processes are recorded; the contents of the in-
teractions are actually reproduced during the replay
phase. Thus, instant replay achieves the goal of only
recording enough information in order to determinis-
tically replay a distributed program. Therefore, the
advantage is that data recorded in the monitoring
phase is significantly reduced. The disadvantage is
that all processes must be re-executed in order to get
the contents of the interactions.

The third approach is event-based behavior modeling
[13]. In this approach, the execution of a distributed
program is seen as a sequence of events. Models are
defined which specify the expected behavior of the
program or the erroneous behavior of the distributed
program using a modeling language. The models are
then used to check against the event flow, or in other
words, the actual behavior of the program. The re-
sults can be used to either help find bugs or they
can be used to control the debugging activities (such
as breakpointing the execution). This approach can
also be used in debugging sequential programs. Since
event is a widely adopted concept, the advantage of
this approach is that it makes the debugging tools
highly adaptable. The disadvantage is that since it
is a rather formal approach and usually requires the
user to learn a modeling language, it tends to be
more difficult to learn and use in practice. It also re-
quires the user to have a pretty good understanding
of the system behavior in order to be able to write
behavior specifications.

Other approaches which we will not introduce here
include static analysis of the distributed programs
and visualization of the distributed programs in
time-process diagrams and animation.

An important issue in distributed program debug-
ging is the debugger architecture design and the con-

trolling of the debugging activities. Figure 2 shows
a distributed debugger architecture. The debugger
console is the host the debugger user is at and is
the place where debugging commands such as single
stepping a remote process, stopping or resuming all
remote processes are issued. The central debug func-
tion provides an interface to monitor, control, and
coordinate the remote debug functions. The GUI
may provide multiple windows for viewing multiple
remote processes. The communication interface im-
plements a protocol for the exchange of debugging
messages among the console and the remote debug
functions. The remote debug functions are agents of
the controlling debug function. They are used to col-
lect information such as those collected in the moni-
toring phase of the record-replay debugging, and con-
trol the actual execution of the remote processes such
as carrying out breakpoint or single step requests of
the central debug function. On a system such as a
multitasking system or timesharing system, the re-
mote debug function may not have direct control of
the system hardware such as CPU to do things like
setting breakpoints; the actions must go through the
operating system. The operating system needs to
provide APIs specifically designed for debugging.

One important aspect of debugging distributed pro-
grams is how the actual debugging activities are
coordinated among the distributed debugging func-
tions. Questions such as “when a breakpoint is en-
countered in a process, should the other processes
be stopped?” are difficult to answer but must be
dealt with in order to produce a useful distributed
debugger.

IV. Debugging Distributed Network
Management Scripting Applications

Among the components of a management script ap-
plication, the only component we want to debug is
the delegated script. The other components are in-
teresting but are not considered debugging targets.
Thus, we define our goal of debugging network man-
agement scripting applications as debugging the log-
ical and performance bugs in the distributed scripts.
More specifically, we do not try to debug bugs in
the scripting framework, faults occurring in the net-
work, or problems in the delegation managers and
management agents.

GUI

central debug function

debug communication interface

debug communication interface

debug communication interface

remote debug function

remote debug function

application process

operating system

application process

operating system

hardware

hardware

Fig. 2. Distributed Debugger Architecture

From this definition, we can characterize our debug-
ging as distributed embedded system debugging. Our
embedded system is comprised of the distributed
scripts; the system’s environment is the scripting
framework, the delegation managers, the manage-
ment agents, and the networking environment. It
shares several characteristics of general embedded
systems:

o Timer-dependent operations. For example, a script
may be executed every five minutes to find how many
clients are connected to our HT'TP server.

o The environment is constantly changing due to
some asynchronous processes not controllable by the
embedded system. For example, a MIB located on
an agent is constantly changing, or a manager may
be executing some other related applications.

o Asynchronous environmental events. For example,
managers may send requests, and agents may send
notifications to the scripts.

In our embedded system, the sensors are manager
requests, polls of the the management agent, and
agent notifications. The actuators are management
operations and the scripts issued to the management
agents. Please note that the term embedded system
usually has some hardware flavor, but our embedded
system is a pure software one.

In order to apply the general distributed program

debugging solutions we introduced in section III to
scripting applications, we briefly evaluate these solu-
tions in the new environment. Since the approach of
taking snapshots of an execution of the distributed
scripts and analyzing the trace after the scripts exit
does not provide too much debugging help to the
user, we will not discuss it further.

Of the two deterministic replay techniques, we con-
sider Simulation Replay to be more suitable to our
system. This is because of the embedded nature of
our scripts. As we have pointed out, some of the
processes in the whole application belong to the en-
vironment of our embedded system. They expose
asynchronous behavior which is beyond the control
of our debugger. For example, due to the nature of
network management agents, it is not practical to try
to control their operations for the purpose of debug-
ging the scripts. Also, it is not an easy task to try to
instrument the managers for the same purpose. We
cannot use instant replay which does not record the
contents of the interactions, and which requires total
participation and control of all processes, including
the manager and agent processes. We can only use
simulation for the managers and the agents.

On the other hand, total record of all interaction
messages requires great system resources. The in-
stant replay technique may be useful to alleviate the
problem but can be only used for interactions be-

tween scripts or any other processes over which the
debugger has good control.

Since events are so fundamental to network manage-
ment, the event-based behavior modeling approach
is potentially a good candidate for debugging both
distributed scripts and even the whole application in-
cluding the managers and the agents. It also serves
as a good method for network fault management.
Further, it may serve as an excellent technique in in-
teroperating the debugging of heterogeneous script-
ing framework applications. For our purpose, a good
way to use this approach is to make it a complement
of the Deterministic Replay approach. It can be used
as a means to specify predicates for breakpoints to
control script executions. Thus when a certain pat-
tern of events appears, the debugger can take certain
actions such as stopping the script execution, and al-
lowing the user to examine the states of the scripts
and the scripting framework.

V. Conclusions

We have shown in this paper that the management
scripts are distributed embedded applications. Of
the established solutions for the general distributed
system debugging, simulation replay is the most suit-
able approach for debugging management scripts,
and we have shown how it is also used to deal
with the peculiar situations in the network man-
agement applications such as time-dependent opera-
tions. We also conclude that a good debugger ar-
chitecture should be integrated with the scripting
framework. This work has important application to
the management of battlefield networks where script-
ing is likely to play a major role.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the Army Research Laboratory or the U.S. Government.

REFERENCES

[1] Y. Yemini, G. Goldszmidt, and S. Yemini. Network Man-
agement by Delegation. In I. Krishnan and W. Zimmer,
editors, Integrated Network Management II, pages 95—
107. North Holland, Amsterdam, 1991.

[2] P. Kalyanasundaram, A.S. Sethi, and C. Sherwin. De-
sign of A Spreadsheet Paradigm for Network Manage-

[10]

[11]

[12]

[13]

[14]

[15]

ment. In Proceedings of the 7th IFIP/IEEE Workshop
on Distributed Systems: Operations and Management,
L’Aquila, Italy, October 1996.

P. Kalyanasundaram, A.S. Sethi, C. Sherwin, and
D. Zhu. A Spreadsheet-based Scripting Environment for
SNMP. In A. Lazar, R. Saracco, and R. Stadler, edi-
tors, Integrated Network Management V, pages 752-765.
Chapman and Hall, London, 1997.

A.S. Sethi, P. Kalyanasundaram, C. Sherwin, and
D. Zhu. A Hierarchical Management Framework for Bat-
tlefield Network Management. In Proceedings of MIL-
COM ’97, Monterey, CA, November 1997.

A.S. Sethi, P. Kalyanasundaram, C. Sherwin, and
D. Zhu. A Spreadsheet-Based SNMP Scripting Environ-
ment for Battlefield Network Management. In Proceed-
ings of the First ARL/ATIRP Annual Conference, pages
251-256, College Park, MD, January 1997.

A.S. Sethi, P. Kalyanasundaram, C. Sherwin, and
D. Zhu. Battlefield Applications of Hierarchical Man-
agement with SHAMAN. In Proceedings of the Second
ARL/ATIRP Annual Conference, pages 235-240, Col-
lege Park, MD, February 1998.

David Levi and Juergen Schoenwaelder. Definitions
of Managed Objects for the Delegation of Management
Scripts, March 1997. Work in progress (Internet Draft:
draft-ietf-disman-script-mib-01.txt).

International Organization for Standardization.
ISO/IEC DIS 10164-21, Command Sequencer, 1995.

N. Vassila, G. Pavlou, and G. Knight. Active Objects
in TMN. In A. Lazar, R. Saracco, and R. Stadler, edi-
tors, Integrated Network Management V, pages 139-150.
IEEE/IFIP, Chapman & Hall, 1997.

I. Yoda, H. Tohjo, and T. Yamamura. Interpreter
Language-Based TMN Agent Systems. In Proceedings of
the 7th IFIP/IEEE Workshop on Distributed Systems:
Operations and Management, L’Aquila, Italy, October
1996.

R. Curtis and L. Wittie. BugNet: A Debugging Sys-
tem for Parallel Programming Environments. In Proceed-
ings of the Third International Conference on Distributed
Computing Systems, pages 394-399, 1982.

T. LeBlanc and J. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on
Computers, C-36(4):471-481, April 1987.

P. Bates. Debugging Heterogeneous Distributed Systems
Using Event-Based Models of Behavior. IEEE Transac-
tions on Computer Systems, 13(1):1-31, February 1995.
D. Zhu, A. Sethi, and P. Kalyanasundaram. Towards
Integrated Network Management Scripting Frameworks.
In Proceedings of the 9th IFIP/IEEE Workshop on Dis-
tributed Systems: Operations and Management, Newark,
Delaware, USA, October 1998.

C. McDowell and D. Helmbold. Debugging Concurrent
Programs. ACM Computing Surveys, 21(4):593-622, De-
cember 1989.

