Coven: Brewing Better Collaboration through Software

Configuration

Mark C. Chu-Carroll
IBM T. J. Watson Research Center 30 Saw Mill
River Road Hawthorne, NY 10532, USA

mcc@watson.ibm.com

Categoriesand Subject Descriptors

D.2.6[Software Engineering]: Programmingernvironments;
D.2.7[Software Engineering]: Distribution, Maintenanceand
Evolution — VersionControl; D.2.9[Software Engineering):
Management SoftwareConfiguratiorManagement®rogram-
ming Teams;D.2.3 [Software Engineering]: Coding Tools
andTechniques

General Terms
HumanFactors Management

Keywords

Collaborate programming

ABSTRACT

Our work focuseson building tools to supportcollaboratie software
development.We arebuilding a nev programmingenvironmentwith
integratedsoftware configurationrmanagementhich providesa vari-
ety of featurego help programmingeamscoordinatetheir work.

In this paper we detalil a hierarchy-basedoftware configuration
managemergystencalledCoven whichactsasacollaboratve medium
for allowing teamsof programmerso cooperateBy providing afam-
ily of interrelatedmechanismsyur systenmprovidespowerful support
for cooperatiorandcoordinatiorin amannemwhichmatcheshestruc-
ture of developmenteams.

1. INTRODUCTION

Modernsoftwarehasbecomencreasinglycomplex asusers
demandnoresophisticatedeatures Thishasledto adramatic
increasen thesizeandcompleity of thesourcecodefor soft-
waresystemsanda concomitanincreasen thesizeandcom-
plexity of the programmingeamsthatbuild thosesystemsin
suchan ervironment,programmersand their managersnust
dealwith the complex processof coordinationand coopera-
tion amongthe memberof the programmingeam.

Management

Sara Sprenkle
Department of Computer Science Levine
Science Research Center Duke University
Durham, NC USA

sprenkle@cs.duke.edu

We arebuilding a programmingervironmentcalled Coven
(COllaboratve VersioningeNvironment) thathelpsprogram-
ming teamsmanagecoordinationin large softwareprojectsby
providing bettersupportfor modernlarge-scalesoftware de-
velopmenfpractices Thecoreof this systemis anew software
configurationmanagemensystemwhich actsas a coordina-
tion spaceandwhichis tightly integratednto anexperimental
collaboratve programmingenvironment.

Currently programmer®n large projectsgenerallyusetwo
separatsetsof tools: aprogrammingernvironment,anda soft-
ware configurationmanagemen{SCM) system. Most pro-
grammingervironmentsare typically written as if the pro-
grammerwere working in isolation, without providing ary
featuresto managecooperatioror communicatiorwith other
programmers.The SCM manageshe programsourcecode,
and provides a limited setof featuresfor managinginterac-
tion betweendifferent programmers.The SCM featuresfor
allowing interactionbetweerprogrammersretypically fairly
low-level and primitive, and the programmingernvironments
provide little to no supportfor integrating thesecooperatre
SCMfeaturednto the programmingexperience.

Covenprovidesbettersupportfor collaboratve softwarede-
velopmentthan existing SCM systemsby providing mecha-
nismsthatallow programmergo communicatewith one an-
otherand coordinatetheir work. It providescapabilitiesthat
reflectto hierarchicalstructureof real programmingprojects,
wherethe project consistsof a large group of people,sub-
divided into groups, eachof which is responsiblefor some
part of the system. Caven’s flexible coderepositoryreflects
this structure,allowing large programmingteamsto coordi-
natetheirwork in differentways,andatdifferentgranularities
dependingnthe needof, andrelationshipshetweenthedif-
ferentprojectsub-teamsAll of its capabilitiesareintegrated
with aprogrammingervironmentspecificallydesignedor use
in ateam-baseérvironment.

Coven provides thesefacilities by building a hierarchical
coderepositorysystem,and integrating a family of features
into the hierarchicalstructure. It storescodeat a fine grain,
bothtemporallyandspatially allowing programmers$o man-
ageandsharecodein flexible ways. It provideslocking and
notification facilities in concertwith the hierarchicalrepos-
itory structurein a mannerwhich maximizesthe utility of
thesefacilitiesin a collaboratve ervironment. Finally, it pro-
videsflexible brawsingcapabilitieshatallow differentproject
sub-teamgo reconciletheir different structuralviews of the

project.

For the most part, theseindividual featuresare not novel.
Variousformsof replicationhave beenusecby Team\Ware[22],
BitK eeper[3],Infuse[18],andAdele[8, 1]. Our changetrack-
ing mechanismaresimilarto thoseusedby PRCS[13].Locks
asacoordinatiormechanisnuatebackatleastto RCS[25]and
SCCS.Dynamic hierarchicalconfigurationshave beenhan-
dledby systemsncludingGwydionSheets[21]ICE[29], Adele,
andInfuse. Fragmentbasedversioningand dynamicsource

file generatiorwerealsoexploredby Lin andReissin Desert[20].

However, the way that Coven combinesthesefeaturesin a
collaboratve settingprovides a uniquesetof capabilitiesfor
coordinatingwork amongmary programmerghat cannotbe
providedby ary of thesesystemsn isolation.

In therestof this paperwewill discusshow theCovenSCM
systemprovides better supportfor collaboratve team-based
software developmentthancurrenttools. In eachsection,we
will startby presentingan exampleof a typical team-based
developmenttask, and contrasthowv currentsystemshandle
thattaskwith how it would behandledn Coven.

Thesescenariowvill betakenfrom acommonexampleproject.

We will usea fictional developmentprojectwhosegoalis to
createanew webbrowser After analysisanddesign theteam
is dividedinto two key sub-projectsonewhosetaskis to build
the userinterface,and one whosetaskis to handlenetwork
communicatiorandprotocolsupport.

The projectconsistsof six programmersdivided into two
teamsto work on thetwo key sub-projectsThe Ul teamcon-
sistsof Alice (responsibléor thedocumentnodelfor HTML),
Bob (HTML layoutandrendering),and Cindy (graphicsand
Javascript). Thecommunicationseamconsistof Dave (HTTP
protocol support),Evelyn (network interface and buffering),
andFrank(cachingcookies andsecurecommunication) The
Ul teamis managedy Geoge,andthe network teamby He-
len.

2. THE REPOSITORY

TheCovenrepositoryis theheartof our system Thereposi-
tory is flexible, basedaroundfeatureghatsupporthierarchical
development.TheCovenrepositoryis designedo supporthis
structureby providing coordinationmechanismghat match
the hierarchicalstructureof the developmentgroupsthat use
it.

2.1 Hierarchical Repository Support

The Covenrepositoryis actuallyimplementedas a family
of relatedrepositoryreplicas,which are coordinatedhrough
a subscriptionbasedmessagingystem. The useof a reposi-
tory hierarchyallows projectsub-teamso isolatetheirchanges
in progress but still maintaincontactand coordinationwith
therestof the project. We will presenthe Covenhierarchical
repositoryin two parts:first, we describenow repositoryrepli-
cation and the hierarchywork to provide safechangeisola-
tion, andthenwe will describehow changesnadein isolation
are propagatedutward throughthe systemby programmer
initiatedreleases.

2.1.1 ReplicationandChang Isolation

The Ul teamis changingfrom an earlier HTML parser to
onebasedon the new W3C standad documenbbjectmodel.

Thisis amajorinternal change to Alice’s code with verylittle
outwadly visible effect.

While the change is in progress,a copy of the systencon-
tainingthe modifiedcodewill notbecompilablebecausearts
of the documenmodelare in the new form, and parts still in
theold. If thechangesbecomevisibleto therestof the project
group, the entire systemwill be unworkable:the commteam
won't be able to testtheir code and eventhe restof the Ul
teamwon' be able to male progressuntil the changes are
completeandstable

In simple SCM tools suchas RCSor CVS, oncecodeis
checledinto therepositoryit immediatelybecomeswvailable
to all programmers.Thesesystemsmake somechangeiso-
lation possiblethroughbranding, which formsa fork in the
pathof versioning.However, in all but the mostsimplecases,
managingforks and meigesin software systemscan be ex-
tremelycomple, andmostprojectstry to minimizethe num-
ber of branchesusingthemonly whenit cannotbe avoided.
In sucha system Alice would not checkherchangesnto the
repositoryuntil shereacheda stablepoint whereit would not
likely interferewith the work of otherteammembers.In the
meantimeshewould notbeableto checkin partialstepawith-
outinterferingwith otherteammembers.

OthersystemssuchasClearCase[19hndVesta[10] make
it much easierto createprojectbranches.In thesesystems,
programmersan createan isolatedspacein which to make
changesby producinga project branchwhich will later be
megedinto the developmentstream. Continuus/CM[6]pro-
videsavariationof thismechanismproviding branchingmech-
anismsthat are specifically tailored towards group structure
andprojectwork-flow.

Finally, anotherfamily of systemsjncluding Adele[8, 1],

CCC[7],andInfuse[18],useanapproactbasednsub-repositories.

In thesesystems,hierarchiesof repositoryreplicasor sub-
databaseareusedto provide a structurednethodof handling
changeisolation. Like othermemberof this family of sys-
tems,Covenis built arounda hierarchicalrepositoryreplica-
tion system.

TheCovenrepositoryisimplementedsahierarchyof linked
repositoryreplicas.Thesystenprovidesa mastercentralpro-
gramrepository which manageshe mastercopy of the sys-
tem. Anythingwhich hasbeenchecledin to the masterepos-
itory is availableto all programmersvorking on the project.
This masterepositoryis replicatedby eachprojectsub-team,
to provide a private sub-repository The sub-repositorymay
be further replicatedto producesub-repositorieor smaller
sub-teamsintil eachprogrammeior eachsmallteamof pro-
grammershasa private sub-repositorywherethey canplace
their own changes.Changescanbe checled into thesesub-
repositoriesvithoutthosechangedecomingvisibleto therest
of the projectteam.(We call this ability to createfrequentiso-
latedprojectversionstempoal fine granularity.)

The sub-repositoriearelinked to their parentusinga sub-
scriptionbasedotificationfacility. Whenrelevanteventsoc-
cur, notificationsaretransmittecbetweerthelevelsof thetree.
For instance,when a unit of codeis changed,information
aboutthe changes transmittedrom the repositorywherethe
changeoccurredto its parent,and if appropriatethe parent
transmitsnformationaboutthatchangeo its parentandto its
otherchildren.

Using this hierarchicalrepositorysupportin Coven, Alice

couldcheckintermediateversionsof herchangesnto aprivate
repositoryreplica,andnot worry aboutinterferingwith other
teammemberswork.

2.1.2 ReleaséMlanagement

Alice finishesher changesto the documenmodeland ren-
derer. Now sheis readyto male the codeavailableto other
teammembes. Shecheksthecodein to therepository

In asimple SCM systemwhena usercheckstheir codein
to therepositoryit instantlybecomeghe new default version
for the entire project. Everyone,both workers on the same
subprojecandworkersondistantlyrelatedpartsof theproject,
will simultaneouslyeceve thenew version.

In moreadwancedsystemsthe mechanisms$or changeso-
lation male it easierto graduallymemge changedackinto the
mainstreamof development.For example,in ClearCasepro-
grammersccessherepositoryusingamechanisntalledview
expressiongo mapfilenamesin a corventionalfilesystemto
the ClearCaseversionspace. By usingthe appropriateview
expressionsprogrammersan easily createprojectbranches
to geta degreeof isolation,andthenmemge the branchback
into themaindevelopmentpathwhenit reaches stablepoint.
The appropriataiseof branchesandview expressionganal-
low differentprojectsub-teams$o maintaindifferentviews of
the project, and graduallyreleasechangego other program-
mers. However, especiallyin the presenceof large numbers
of branchesandhierarchicalgroupstructure the view expres-
sionscanbecomesxtremelycomplicatedandcanleadto great
difficulty in managinga ClearCaseepository[28].

The adwantageto Coven’s approachis that it provides a
verysimplestyleof isolationandre-integrationwhichmatches
naturaldevelopmentgroup structureand developmentstyles.
Changesreautomaticallyreleasedo wider groupsof usersn
amannerwhich suitsthe structureof the developmentgroup.
This naturalpropagatiorof currentversionshappensutomat-
ically within thereplicatree,without the compleity of either
writing configurationexpressiongasin ClearCasepr manu-
ally managinghe branchingstructureof the repository(asin
Vesta).

As we discussedin the previous section,in Coven,changes
areinitially isolatedto a privaterepositoryreplica. Whenthe
programmersesponsibldor thatreplicareacha stablepoint,
they needto be ableto malke their changesccessibléo other
membersof the project. In Coven, this processs calledre-
leasingasetof changes.

Changeeleasesreintegratedinto therepositoryhierarchy
Whenaprogrammereleases setof change$rom herreplica,
theentiresetof changess copiedto herreplicas parent.After
areleasethe parentrepositoryreflectsa differentheadversion
of artifactsthanary othersub-repositoriesotinvolvedin the
release.The parentthensendsout a notificationto ary other
childreplicas,jnformingthemthatthey needto re-synchronize
their sub-repository The replicas,uponreceving this notifi-
cation,will alertusersof the repositoryof the availability of
changes. Whenthe usersof the replicaareready they can
re-synchronizewith the parentreplica, integratingthe newly
releasedchangesnto their replica. This resynchronizatioris
initiatedby theuserof thereplica,ratherthanautomaticallyin
orderto prevent abrupt,unexpectedchangedrom interfering
with programmerén the middle of sometask.

Becausef thelocking mechanismsysergarelymale con-

currentchangego asinglefragment.But undersomecircum-

stancesgconcurrenthangesre unasoidable. In sucha situa-
tion, Covenwill performanoptimisticmeigeof theconcurrent
changesandif ary errorsaredetectedit will requirea userto

interveneandresole the conflicts.

Usingthisfacility, Alice hastheability to releaseéhecodeto
aparticularsub-teanof theproject. Shecanstartby releasing
her codeto the othermembersf the Ul team. Whenthey've
testedit, and are satisfiedthatit's ready it can be released
to a wider group. The hierarchicalrepositorysupportallows
teammembersvho work closelytogetherto sharecodemore
readily andto integrate changeamore frequentlywith each
otherthanwith teammembersvorking on moredistantparts
of thesystem.

2.2 Project-BasedVersioning Model

The repositorystorescodein a versionedprogramstore.
Thestoreperformsversioningatafiner grain,bothtemporally
andspatially thantypical programrepositories® Supportfor
changepackagesndconsistentierarchicalprojectsare pro-
vided througha flexible compositeartifact mechanism.The
use of sucha fine-grainedrepositoryenhance<Coven’s co-
ordinationfeatures andenableghe useof multi-dimensional
programorganizationsyhich we will discussn section3.

2.2.1 Fragment-Basedersioning

Alice madechangesto therenderingcodeto supporta new
documentmodel.Whenshefinished shechedkedthecodeinto
thesub-epositoryshaedby theUl team.Thiscauseda wide-
ranging setof changes, replacingsomeclassesentirely, and
altering parts of others. The changs ranged through many
files, but tendedto be localized to relatively small parts of
thosefiles.

In mostconfiguratiormanagemertbols,therepositorystores
versionsof sourcefiles. All of the facilities of the repository
from versionhistoriesto locks are managedn termsof en-
tire sourcefiles. We referto this ascoarsespatialgranularity.
This coarsegranularitylimits theusefulnes®f all of thosefa-
cilities in a collaboratve setting:

e A programmein theproces®f makingasetof changes
whena new changeseis releasedy someoneelsehas
difficulty assessinthecostof integratingthatchangeset
immediatelyversuswaiting until his changesarecom-
pleted.

e Coarsegrainedlocks easilybecomea bottleneck.even
whenprogrammersiretrying to changenon-conflicting
sectionsof agivensourcefile.

e Changehistoriesof a particularmethodor functionare
difficult to extractfrom theversionhistoryof thesource
file containingthe method/function.

Thesolutionto thisis to performversioningof smallerunits.
SeveralsystemsincludingCOOP/Orm[14hndDesert/Poem|[11,
20] have createdsystemswith finer artifactgranularity

Coven performsversioningon the level of the smallestin-
dependenprogramfragment. The exact size of a versioned

! Temporal fine granularity allows programmersto record
changehistory of small partsof the systemfrequently with-
out creatinga complex versionhistory for the entire project.
Spatiaffine granularityallows smallercodeelementgo bever
sioned allowing moreprecisechangehistories.

fragmentn Covenis dependenvnthelanguage(sheingused.
For aprogrammindanguagesuchasJavaor C++,theprogram
fragmentsizeis generallyanentiremethod/function/fieldlec-
laration.In atext-processindganguagdik e LaTeX, afragment
would be a paragraplof text. (A figureillustratinghow a Java
sourcefile is partitionedinto versionedragmentss shavn in

figurel.)

package collections;

import java.util.*;

public class Item extends Linkable {

| public Linkable getNext() {|... }

| public void setNext(Linkable I) { ..

‘ protected Linkable _n?xt;

3]

Figure 1: Division of Java sourceinto versionedfragments

Eachprogramfragmentis versionedindividually. This al-
lows programmerso view the changehistory of anindividual
item, andto easilyunderstandhow programelementswill be
affected by the integration of a particularchangeset.It also
providesa vastimprovementin termsof communicatiorand
coordination:ary coordinatiorfacility providedby the system
canoperatein termsof relatively small programunits, rather
thansourcefiles.

Of course,versioningin termsof small fragmentsmeans
thatthe systemmustprovide tools for composinghesefrag-
mentsinto larger units. Beyond simply maintainingthe ver-
sionsof fragmentsthe systemmustalsomaintainversionsof
linguistic structureq(like classesphndstructuralentities(like
conceptuallyseparatedoncerns[24]jhatarecomposeaf col-
lectionsof relatedprogramfragments.

For instanceto representhe changehistory of a class,the
changehistoryof its fragmentss notsuficient. Overtime, the
classmay add or remove methods.Thesechangeshouldbe
reflectecby achangedn anartifactrepresentingheclass.This
facility is providedin our systenthroughthe useof compound
artifacts, describedn thenext section.

2.2.2 CompoundArtifactsandthe ProjectModel

After Alice chedsin her code therestof her teamstartsto
male changesto their owncodeto integrate into the new doc-
umentmodel.After several changesare applied,they discover
a crucial bug in Alice’s code While shefixesit, therestof the
teamneeddo revertto theold documentnodelcode

In the simplestSCM systemsreverting to anolder version
of an entire projectcan be cumbersome File basedsystems
like RCSandCVS provideamechanisntalledtagging, which
identifiesaversionof theproject. A tagis atextuallabelwhich

can be appliedto all artifactsin a particular project which
marksthe versionof eachartifactthatwasin placewhenthe
tagwasapplied. The taggingmechanisnis completelyman-
ual: the programmerchoosedo createa taggedversionand
manually choosesa namefor the tag. A tagis only placed
when a programmerexplicitly doesso, and the relationship
betweerdifferenttaggedversionss only asclearasthelabels
theprogrammechoseto use.

Changepackagesystemdik e ClearCase[19nale the job
significantlyeasiersincechangesirealwaysrecordedn padk-
agesthatcollecta setof relateddeltas,onecansimply choose
the setsof packageso roll back.ClearCasealsoprovidesfea-
turesfor recordingexactlywhichartifactversionsvereusedo
producea particularversion,allowing rollbacksbothto named
versions(correspondingoughly to tagsin simplerversions),
or particularpointsin time. Systemswith a strongnotion of
configurationsas versionedentities, including [8, 1, 10, 20]
amongmary othersyetaincompletanformationaboutthehis-
tory of all complex artifacts,from singlefilesto subsystemgp
entireprojects.Thesesystemsallow programmerso rollback
thesystemto ary paststateof ary versionedconfiguration.

Coven’s projectmodelis basedn the subdvision of a pro-
grammingprojectinto sub-projectsgalledcompoundrtifacts
(CAs) A CA is aspecificationof a setof versionedartifacts
which areits membersTheseartifactsmay; in turn, befurther
CAs, nestedarbitrarily. Whena projectcontainsnestedCAs,
the contentof thoseCAs neednotbemutuallyexclusive: two
CAs maycontainoverlappingprojectsubsetsA CA is essen-
tially the samething as a configurationas discusseckarlier;
we chooseto use a different term becauseCaven CAs can
be very fine-grainedentities such as dynamically generated
sourcefiles, while the commonnotion of a configurationis a
highergranularityentity. Coven compoundartifactscombine
both the commonconfigurationnotion of mostSCM systems
and the virtual sourcefile notion of systemdike Desert[20]
andSheets[21].

The CAs themselesare versionedartifacts,which change
overtime. A versionof a CA specifieghe setof artifactver
sionswhich are its members. Betweenversionsof the CA,
notonly canthe particularartifactversionscontainedn a CA
changebut the setof artifactsitself maychange For instance,
in the examplewe discussedn the previous section,a class
would beimplementedby a CA containingall of the artifacts
thatcontainelementf the class. Whena methodis deleted
andthe classCA is checled in to the repository the artifact
containingthatmethodwill beremoved from the new version
of theclassCA.

CAs areusedfor awide rangeof purposesn Coven. Ona
finegrain,amembemdeclaratiorandits documentatiomaybe
containedn asingleCA; onacoarsegrain,all of theartifacts
that make up a particularclassdeclarationare containedn a
CA. Thishierarchyof everlargerCAscontinuesuntil wereach
the level wherethereis a single CA representinghe entire
project.

A CA versionrepresenta snapshobf theversionsof apar
ticular collectionof artifacts,asthey existedat somepointin
time. Throughthe useof the CA system,Coven allows pro-
grammergo roll backary setof changesreturningary part
of the systemto its exactstateat somepointin the past.

CAs provide the basisfor our modelof projectconsistency
As we describedn the previous section,the history of a CA

representa snapshobf the stateof a collection of member
artifactsat somepointin time. We saythatsucha setof ver-
sionswhich coeistedtogethercanbe referredto asa consis-
tentprojectversion (CPV).

Ourmodelextendsthis notionof consisteng with temporal
fine granularityof CPVs. A given CA is subdvidedinto sub-
CAs. The CA hasa history of CPVsthat representhe state
of consistentversionsof the entire setof artifactscontained
within the CA. Thesub-CAsalsohave their history of consis-
tent versions. The sub-projectanay have CPVsthat are not
component®f any CPV for the entire project— they repre-
sentintermediatestatesof the subprojectbetweenconsistent
versionsof the enclosingproject.

In termsof our example,Alice hasa consistenversionhis-
tory of thesubprojectontaininghercodein thehistoryof her
particularsubprojectCA. While sheis working on the new
documentmodel, shecontinuesto createnew consistenter-
sionsof her subprojectCA. Until shes readyto releasethe
codeto her co-workers, shedoesnot createa consistenter-
sionof theUI subprojectCA — herconsistentersionsarenot
readyto integratewith the restof the project. But within her
subprojectshehasafull historyof thechangeshemadeand
shecaneasilyrevertto ary paststateof thatsubproject.

This useof hierarchical(sub)projectCAs meansthat the
history mechanismgan operateat multiple temporalgranu-
larities. The history of the CA representindghe entire project
is fairly coarse representing history of stablestatesof the
primary component®f the system.Within ary givenversion
of the entire project, thereexists a history of how eachcom-
ponentof that systemevolved to the new version. Program-
merscantake adwantageof this by having a precisehistory of
their own work, by being able to maintainflexible isolation
andintegrationof their changesandby beingableto view the
changehistoriesof otherpartsof the systenwith thenecessary
degreeof detail.

2.2.3 Consistencyetails

Our use of potentially overlappingsubprojectCAs intro-
ducesaconsisteng requiremenfor CA versions.For ary arti-
factcontainedwithin a CA, theremustbe exactly oneversion
of thatartifact.

For anexampleof why this consisteng requiremenis needed,
considerthe following. Given a systemrepresentethy a CA
P, which containssomesetof sub-CAsincluding @ and R.
VersionP; of P containsversionsy); andRy, of Q andR. @,
andR;, bothcontainaversionof asimpleartifacta;. Someone
changes:, producingversiona;+1. Shechecksin this change
usingsub-project), producingversion@;+1. Now shetries
to checkin project P, with @Q;+1 and R, asmembers.If a
version P, was created,it would containboth versionsa;
anda;1 of a.

The solutionto this problemusesa featurelogic muchlike
thatdescribedn [29]. (Anothersolutionto this problembased
on a differentapproactis describedn [8].) EachCA version
is representedsinga specificatiorcontainingalist of features
describingits members. For eachartifact, thereis a version
feature specifyingtheversionof thatartifactcontainedvithin
that CA version. Whena new CA versionis createdthe ar-
tifact specification®f all artifactstransitively includedin the
CA aremeged. The meige operationfor the artifact version
featuresis definedto producean error for non-matchingver-

sionvalues.

Whensuchan error occurs,the systemrejectsthe check-in
of codedueto the inconsisteng. It generates natification
which is sentto the programmemwho performedthe check-
in andto the programmeravho checled in the CA versions
involvedin the conflict, sothattheinvolved programmergan
work togetherto resole the problem. The systemcan assist
in theresolutionof this conflictby providing theprogrammers
with adiff3-like view of their conflictingcode,allowing them
to identify andresolhe the key differences.

2.3 Locking and Coordination

Thekey to coordinatiorbetweermember®f aprojectteam
is communication.Coven provides a setof facilities that al-
low the SCM systemto supportandenhancecommunication
betweerteammembersThe primary communicatiormecha-
nism provided by Covenis calleda softlock. A softlock al-
lows programmerso attachnotificationsto partsof the project
in a way that allows themto keepin touch with other pro-
grammers.We will first presenthe notion of soft locks, and
describehow they allow programmerso communicate Then
we will describehow soft locks areintegratedwith therepos-
itory hierarchyto provide a family of different coordination
mechanismseperatingat differentgranularities.

2.3.1 SoftLocks

SinceAlice is busyreplacingthe old documentnodelcode
it' simportantthatotherprogrammes not male changesto the
codethat shes replacing or their changeswill causehard to
resolveconflictslater.

Mary SCM systemspravide somekind of mechanisnfor
locking code. This allows programmergo mark a sectionof
codethatthey intendto changeas“off limits”, to preventother
programmergrom making conflicting changes.Theselocks
provide a powerful coordinationmechanismallowing a pro-
grammerto notify othersabouttheir actiities to preventadif-
ficult and expensve problem. But in currentSCM systems,
locks have a major weakness:since SCM systemstypically
operateon entiresourcefiles, alock limits accessotto asin-
gle programconstructput to anentiresourcefile. Whenapro-
grammeiocksa sourcefile to make a changeto oneprogram
fragmentlocatedin that sourcefile, the entire file is locked,
andno onecanmale changego ary otherpartof the system
containedin thatfile. This improperlock granularitycauses
locking to becomeamajorbottleneckwhereprogrammerin-
terferewith one anothernot becauseof genuineconflict but
becausehey needto work with different programelements
thathapperto belocatedin the samesourcefile.

In responséo thisproblem mary SCMsystemdiave adopted
an optimistic approachjn which they assumehat program-
mersare well-coordinatedfrom outsideof the SCM system
andthat conflictswill occurvery rarely They thereforedis-
cardlocking and allow programmergo edit files as needed.
Whenchangesrechecledin to therepository the SCM sys-
tem checksthat thereare no conflicts, and requiresthe pro-
grammerto resole the conflictsimmediatelyif they occur

Coven takesa middle-groundapproach.Locking canbe a
very seriousbottleneckto a developmentteam. But thatdoes
notmeanthattoolsshoulddeprive programmersf ausefulco-
ordinationfacility. Coventhereforeprovidesa facility called
asoftlock. A softlock is placedon codeby a programmeto

notify othersthatsheis makingchangesAssociatedvith the
softlock is a log messagelacedby the programmer When
anotherprogrammertries to changesoft locked code, he is
notified that the codeis locked, and presentedvith the lock
messagelf hedecidedo goaheadandmake changesthepro-
grammemvho placedthesoftlock is notified of thosechanges,
so that shecan be aware of ary impendingconflicts. When
suchaconflictis detectedthe systemallows theinvolved pro-
grammerdo know in advanceof the potentialfor a problem,
so thatthey candiscussthe appropriateaction. The system
canprovide somecommunicatiormechanismso assistin this
process.

As with all of the othermechanism®f Coven, soft locks
areintegratedinto the repositoryhierarchy allowing locks to
be placedat mary differentgranularities from locking small
programunits to locking entire projects. At the finestgrain,
softlockscanbeattachedo individual programfragments At
coarsegrains,softlockscanbeattachedo ary CA, whichim-
plicitly attacheghelock transitively to all artifactscontained
by the CA. Thus,asinglelock cancover arything from asin-
gle fragmentto an entire project. The systemallows usersto
choosehelock granularitywhichis bestsuitedto thetaskthat
they are performing,choosingthe tradeofs betweenmanag-
ing large numbersf smalllocks,versussmallgroupsof large
locksaccordingto their particularrequirements.

2.3.2 Hierarchical Lock Management

OnceAlice haschededin her code other membes of her
sub-teamcan look at and alter the codethat shes cheded
in to therepository Shedoesnt needto be notifiedead time
they male a change; however, shestill needgo knowif anyone
fromthe communicationsub-teamalters anythingin the old
codethat shehasreplacedbut hasnotreleasedo themyet.

In mostSCM systemsa systemartifact on a given project
branchis eitherlockedor unlocked. To allow codeto belocked
for someusers,but not for othersrequireshbuilding project
brancheswith the difficulties discussedearlier Coven uses
therepositoryhierarchyto allows a moreflexible locking sys-

temwithouthaving to explicitly managemultiple projectbranches,

andwhile retaininga singlelinear changehistoryfor eachar-
tifact. It doesthis by allowing locksto be placedover portions
of therepositoryhierarchy A lock maybe placedatary level
in thehierarchyandmaycover eithertheentiresub-hierarchy
or may excludesections.In this example,Alice could placea
softlock on the componentshatsheis changingin a manner
thatlocksthecomponentsver theentirerepositoryhierarchy
excludingonly the sub-repositoryisedby hersub-team.

Internally eachrepositoryreplicamaintainsanformationabout
locked artifactsin the repository Lock informationis trans-
mitted betweerreplicalevelsasnecessary

Whena programmersynchronizeher replicawith its par
ent, shemay chooseto lock somepart of the system(thatis,
someartifact or collection of artifacts)that she(or her sub-
team)planto change. This lock may be placedin a manner
which locks the codethroughoutthe entirereplicahierarchy
excludingthe particularsub-hierarchyherethey will beper
formingthechangesAfter suchalock, programmersvho use
the unlocled replicaor children of the unloclked replicacan
malke changedo the locked codewithout triggeringthe lock
notifications,but programmersutsideof this sub-hierarchy
cannot.

Figure 2: An exampleof hierarchical locking

An exampleof therepositoryreplicationhierarchyusedby
our projectteamis illustratedin figure 2. If Alice locks the
codefor thedocumenmodelto make changeén theUl teams
repositoryreplica(illustratedby thecirclearoundtheUl replica),
thenthelock s in placethroughtheentirehierarchyexcluding
the sectionsurroundedy dottedlines: thatis, in the master
repositoryreplicaandin all of the commteams sub-replicas.
Similar locking/coordinatiorfeaturesarediscussedn [8] and
[18].

Using this mechanismAlice could releasehe codeto her
project sub-team,allowing them to use and alter the newly
releasedrersionof her code,but shewill still receve notifi-
cationswhenaryoneelsetriesto changeary membersof the
CA thatshewasworking on.

3. MULTIDIMENSION AL PROGRAM OR-
GANIZATION

Alice and Bobwork togetheron oneof the key piecesof the
userinterface: the documentenderingframe Butthey have
verydifferentviewsof it.

Alice viewsit asa carvas, uponwhich documentlements
paint themselvesHer view is basedon the documenbbject
modelitself, ontheclasseghatmale upthestructue of adoc-
umentandhowthat structue will paintitselfontothescreen.

Bobviewsit asa containerfor userinterfaceelementsSome
of the elementghat get paintedonto the screenare actually
links, and clicking on them should causethe user interface
to react. Bob doesnot particularly care aboutthe document
model: hejustknowsthat certainkindsof elementswill bein-
volvedin Ul actionsthat he needsto program. He needsto
knowwhete links are locatedon the screenand how layoutis
done Buthedoesnot particular care aboutthe detailsof the
documenstructue thatunderlyit.

For Alice, the natural way of looking at the program is
throughan object-orientedAST pattern. A documenis rep-
resentedas a parse tree whee ead nodein the treerepre-
sentsa documentelement. Each documentelementtype is
implementeds a class,which hasa family of methodsthat
implementhe opertions of the class. Renderingis just one
methodamongthe many Alice wantsto view the codeorga-
nizedaccoding to thoseclasses.For her purposesthe ideal
organizationof the codeinto files putsall of the functionsfor
a givenclassinto its ownsourcefile.

Rectangle AnchorElement.calculateSizeAndPosition(Point origin

)

Rectangle FrameElement.calculateSizeAndPosition(Point origi

void AnchorElement.handleMouseEvent(MouseEvent mevent);

void FrameElement.handleMouseEvent(MouseEvent me); i

Color AnchorElement.getForegroundColor();

Color AnchorElement.getBackgroundColor();

Color FrameElement.getForegroundColor();

Color FrameElement.getBackgroundColor();

A

Slice 1: Functional layout component
Slice 2: Functional event handling component
Slice 3: Functional color component

Slice A: Structural AnchorElement component
Slice B: Structural FrameElement component

Figure 3: Orthogonal Program Organizations

For Bob, the object-orientedpatternis distracting Whathe
caresaboutis a limited subsebf the code: howlayoutis per
formed. He wantsto be able to follow the data and contol
flow of layout on the screen. For him, the bestcodeorgani-
zationwould be onewhete all of the placemenimethodsare
together so that he could follow the contmol flow throughthe
layoutmethods.

In conventionalprogrammingervironmentsand SCM sys-
tems,programmersnustacceptoneorganizationof the code.
A given programfragmentis locatedin ong and only one
sourcefile. The programmersnustagreeon a canonicalor-
ganization.In our example,thatmeanghateitherBob or Al-
ice mustaccepta codeorganizationwhich is not well-suited
towardstheirtask.

While thereis a whole new field of software engineering
work, calledMultidimensionalSeparatiomf Concerns[2423],
dedicatedto this problem, very few SCM systemshave ad-
dressedt. The CMU Gwydion project[21] startedwork on
this, but never reachedhe point of building a completeSCM
repository Lin andReisss Desert[20]systemprovidesanap-
proachsimilarto thatof Coven,but basednfragmentsaving
aprimaryhomein onesourcefile.

Coventakesadwantageof fragmentbasedversioningto al-
low programmerso generatenultiple orthogonaprogramor-
ganizationsEachfragmentis handledseparatelyy therepos-
itory. Programmersiccesghe repositoryby checkingout dy-
namically generatectollectionsof programfragmentscalled
virtual sourcefiles (VSFs) Eachprogramfragmentcanbelo-
catedn mary differentVSFs,eachof whichrepresentapiece
of a differentdecompositiorof the program. Alice and Bob
caneachhave their own optimal programorganization with-
outinterferingwith eachother Internally a VSFis simply a
subprojectepresenteth amannemvhichis usefulfor viewing
acollectionof programfragmentsn a corvenientway.

Figure 3 illustratesa view of a small part of the program,
andtwo orthogonalprogramorganizations Slices1, 2, and3
form a decompositiorof the programinto componentbased
on functional elements;slices A and B form a decomposi-
tion of the programinto component®asedon classstructure.
Thedecompositiorinto functionalcomponentss the program
view thatBob preferswhile thedecompositionnto classess
Alice’s preference.By usingVSFs,Bob andAlice caneach
usethe programorganizationbestsuitedto the taskthatthey
areperforming,withoutary conflict.

3.1 Query BasedRepository Access

Bob wantsto change someeventhandlingmethodsin the
browser He needgo look at thelayoutsubsectiorof the doc-
umentmodelcodeto change howeventsare signalledby some
element®ftherendeeddocumentThecodeis structuredac-
cording to the DOM specificationand s therefore organized
by classedn the DOM hierarchy. This organizationscattes
therelevantcodeacrossmanydifferentsourcefiles.

As we discussedn the previous section,in a corventional
SCMsystemBobwouldneedo look atcodescatteredhrough
mary differentsourcefiles. With Coven,hecoulduseavirtual
sourceorganizatiorthatallows him to virtually restructureghe
codeinto thefunctionalelementghathewants.However, gen-
eratingthis new organizations difficult. Specifyingaprogram
organizationby identifying exactly whatfragmentsshouldbe
includedin eachVSF is prohibitively difficult.

Coven simplifies the identification processhy providing a
querylanguagethat programmersiseto specifyhow to gen-
eratethe differentprogramorganizations Eachtime a virtual
sourcefile is checled out of the SCM system the setof frag-
mentscontainedn thatVSF is dynamicallygeneratedby exe-
cutingaquery

Coven’s querylanguageconsistf a simple coreto which
query extensionscan be added. The initial systemprovides
a set of primitive query types, which can be assembledo
form comple queries. Usersof the systemare free to add
new querytypes,which canbeeithercomposition®f existing
gueriespr entirenev componentshataredynamicallylinked
into the system.

Eachvirtual sourceis specifiedby a queryline with a pred-
icatethatspecifiesa conditionthatfragmentsnustmeetto be
includedin the source.The systemscangherepository gen-
eratingthe collectionof fragmentswhich shouldbe included
in the VSE Oncethefragmentsarecollectedthe VSFis gen-
eratedin aform determinedby its formatclause.By default,
the VSFformatis an XML documentwvhichis usedinternally
by the Covenervironment.

VSFscanbeexportedin otherformatsby specifyingavalue
for theformatclause . The formatclausespecifieshe nameof
acomponentalledanexporter, which is usedto generatéhe
VSF in a particularform. Programmersre free to add nev
exportersto the system,allowing themto generateVSFsin
ary formatcorvenientfor theiruse.Eachexporteris generally
pairedwith animporter which allows the systemto readcode
into therepositoryfrom otherformats.

A typical exampleof the useof exportersis shavn in fig-
ure 4, wherea formattype "java” is specified. This exporter
would generatehe VSFin the formatof a typical Java source

file, which is usableby a standard)ava compiler, or ary other
tool that readsJava sourcefiles. Throughthe useof a setof
simple filter programs,even timestampdependentools like
Unix “make” caneasilybe madeto interoperatavith Coven.

/1 Exanple 1
source Perfornlayout =
sel ect fragment from browser.ui where
(fragment inpl cal cSi zeAndPosi ti on)

/1 Exanple 2
source MuseEvents =
sel ect fragment from browser.ui where
(fragnment inpl handl eMouseEvent) or
(exist other from browser.ui where
(ot her inmpl handl eMouseEvent)
and fragnent dependsOn ot her)

/1 Exanple 3
source AnchorEl enent.java =
sel ect fragment from browser.ui where
(fragments nenber & ' Anchor El enent’)
format ’Java’

vi ew Functional = { PerforniLayout,
MouseEvents }

Figure 4: Example of queriesfor the functional organiza-
tion

In figure4, weillustrateexamplequeriesfor aCovenrepos-
itory containingJava code. The first query selectsthe setof
fragmentsthat containimplementationof a methodnamed
“calcSizeAndPosition”. The secondis similar in thatit also
selectsall methodghatimplementa particularmethod(in this
case,"‘handleMouseEsnt”, but it alsoincludesfragmentson
which implementation®f “handleMouseEsnt” depend.The
third exampleillustrateshow codecanbe withdravn from the
repositoryto be usedby othertools. It selectshe setof frag-
mentsthataremember®f theclass‘AnchorElement” andex-
portsthemasa standardlava sourcefile, with fragmentiden-
tity informationencodednto comments.The generated/SF
will beusableby corventional non-Caoenbasedools,includ-
ing standarccompilers.

Example4 illustrateshov VSFsare usedto generatepro-
gramorganizations A programorganization(calleda view in
the querylanguage)s nothingmorethana collectionof vir-
tual sourcefilesthatrepresenbneorganizatiorof theprogram
source.

Theuseof query-basedepositoryaccessanleadto added
compleity, becaus@rogrammersnay needto write comple
queryexpressiongo getexactly the setof fragmentdn which
they areinterested. But we believe that this tradeof is ac-
ceptableour querylanguagenakesroutinequeriesextremely
simple, but provides the power to do more comple things.
Thesimplequeriesfor simplecasegreventCovenfrom being

significantly more complex than more corventionalsystems.

For the advancedcaseswvhere complex queriesare required,
we areproviding a significantcapabilitywhichis not possible
usingconventionalsystems.

Becauseall of Coven’s coordinationmechanismsre pro-
videdin termsof individual fragmentgandcollectionsof frag-
ments),the coordinationtools work equally well even when
programmersreviewing the codethroughdifferentprogram

organizations.

4. USERINTERFACE SUPPORT

The use of an SCM systemlike Coven introducesadded
compleity to the task of the programmer The programmer
gainsexpressvenessandorganizationafflexibility atthe cost
of dealingwith queries,consisteng, andthe lossof intrinsic
contt. To hide the addedcompleity, a programmingen-
vironmentcan make the compositionand decompositionof
programmindragmentsaandthemanipulatiorof multiple pro-
gramorganizationsnoretractable.

We have built aprogrammingervironmentwhichallows the
easyintegration of externaltools into a flexible linked-pane
style programmingervironment. This ervironmentintegrates
all of the coordinationandversioningfacilities of Coveninto
acohesie programmingervironment.

Theuseof suchanintegratedervironmentis crucial. With-
out it, notification mechanismsuch as soft locks lose their
immediag, whichis akey to strongcoordination.

Beyond simply integrating Coven’s features the program-
ming ernvironmentenhanceshem by making them easierto
use. For instance the ervironmentsimplifies the processof
generatingnew queries by providing toolsto guideprogram-
mers.It easesheuseof differentviews, by providing toolsto
rapidly and easily switch betweenthemwithout loss of con-
text.

ForinstanceconsideiDave, workingontheHTTP protocol
support. He needsto integrate his codewith Alice’s docu-
mentmodelcode.But his view of the systemis quitedifferent
from hers.Whenhe hasa questionaboutAlice’s code,hecan
ask her for an explanation. She canuseher ervironmentto
senda descriptionof her screerto Dave; Dave’s ervironment
will thenshav whatAlice is seeing. OnceDave’s questions
areansweredhe canswitch his ervironmentbackto his pre-
ferred view, highlighting the codethat he sav from Alice’s
viewpoint.

5. RELATED WORK

5.1 Cooperative Environments

The COOP/Orm[14]projecthasdevelopeda collaboratve
SCMsystemintegratedwith aprogrammingervironmentwith
goalsvery similar to Coven. COOP/Orm,however, usesan
optimisticapproachwith synchronousipdatesin sucha sys-
tem, programmersanchangeary codeat ary time, with the
changesmmediatelyreflectedin the workspacef all pro-
grammersusing the system,and with the systemdetecting
conflicts. Coventakesa differentapproachbasedon our be-
lief thatin an ervironmentwith large numbersof program-
mersworking on a project,immediateupdatesaretoo disrup-
tive to individual programmerslinsteadof the immediateup-
date approachof COOP/Orm,we have insteadoptedto use
the hierarchicalreplication/releasstrategyy with soft locking.
COOP/Ormalsousesafine-grainedrersioningmodelwith hi-
erarchicaldocumentssimilar in somewaysto our model of
fine-grainedversioningwith hierarchicalcomposition. They
providefine-grainedrersioningdown to afinerlevel thanwhat
Covenprovides,performingversioningonthelevel of individ-
ual programminglanguagesxpressions.We believe that the
costsof the compleity imposedon the programmerandthe

ervironmentto dealwith suchfine granularityis greaterthan
thebenefitthatit provides.

Systemsincluding TeamWare[22] and Infuse[18] provide
replicationsupportsimilar to ours. We believe that our sys-
tem takes better adwvantageof this replication hierarchybe-
causeof its integration with other features,including query
basedepositoryaccessandsoftlocks.

Adele[8, 1] provides extremely powerful supportfor soft-
warebuilding, alongwith aform of hierarchicasupportbased
on sub-databasedt doesthis throughthe useof rathercom-
plex objectdeclarationsvhich expressdependenciebetween
objectsin the repository This mechanisnallows to storeand
versionnot just the original sourceartifacts, but all interme-
diate productsas well. Similarly, Vesta[10],while not pro-
viding hierarchicakupportdoesprovide excellentsupportfor
changeisolation, while also managingbuilds and versioning
of intermediateesults.

5.2 Dynamic Viewsand Multidimensional
Organization

The idea of multiple programviews basedon rearranging
sourceorganizationswas explored by the Gwydion project
from CMU[21]. The Gwydiongroupbuilt a hypercodepro-
grammingenvironmentcalledSheetsLike Coven,the Sheets
systemsubdvides codeinto programfragmentsand allows
fragmentgo bedynamicallyassembleihto new virtual source
files, which they call sheets.The Sheetservironmentuseda
querylanguageto generatesheetsviewed by their Ul. How-
ever, the Sheetssystemdid not integrate SCM with this dy-
namicview support. Further this view systemwasbasedon
their useof a repositorywhich could only be accessedrom
within their system. Lin and Reiss[11]provide very similar
functionality in their desertsystem,completewith fragment-
level versioning,but usinga differentmodelof repositoryac-
cess.

TheHyperJ projectat IBM, boththroughtheir hyperspaces
work[24], andtheir earliersubject-orienteghrogramming[15,
16] have exploredthe notion of multidimensionaprogramor-
ganizations.Their focushasbeenon implementingsoftware
usingmultidimensionakeparatiorof concernsandtheninte-
gratingthoseseparatedoncernghrougha powverful composi-
tion system.

5.3 Repositories

IBM’ sVisualAgeSmalltalkincludesafine-grainegorogram
repositorywith somecollaboratve facilities,calledENVY[17].
ENVY includessomeockingfacilitiesandareplicationmodel
thatresemblesursin mary ways. ENVY presentsa model
of the projectthat strictly dividesthe systeminto subpartsn
staticways. It provideslocking supportstrictly in termsof this
staticallyimposedprogramorganization.This systemis notas
flexible as Coven, wherenew organizationamay be dynami-
cally generate@sneededandlockscanbeusedto coordinate
work on ary collection of codedesiredby the programmer
Further ENVY providesno queryenginenor ary othertools
for generatingcustomviews of sourcecode. Becauseof the
tight integrationwith therepositoryandthelack of any mech-
anismlik e programmableur formatmechanisnior exporting
code third partytoolsaredifficult to usewith their system.

ClearCase[19andrelatedSCM systemsprovide powerful

provides this supporttransparenthyby presentingitself as a
network file system,with the changepackagesupportnor

mally hiddenfrom the user Changepackagesio provide a
form of project consisteny, but do not have the expressie

power of our consisteng model. In particular ClearCaséias
no notion of a consistentsubproject,which preventsor re-
strictsthe useof theflexible coordinatiormechanismsimilar
to thoseprovided by Coven. Beyond actingasa codereposi-
tory, ClearCasalsoprovidessignificantdevelopmentsupport
in integratingbug-tracking,associatinghangepackagesvith

bug fixes,andbaselineandbuild managementjoneof which

arecurrentlysupportedy Coven.

Corventionalversioncontrol systemsjncluding RCS[25],
CVSJ[4],andPRCS[13]all allow programmerso interacthrough
a commoncoderepository All provide sometools for pro-
grammeiinteraction.CVSandPRCShothuseoptimisticmeth-
odswith conflict detectionandresolution,whereasRCSuses
excluswie locking. CVS and RCS lack project consisteng
models. PRCShasa strongproject consisteng model quite
similar to oursexceptthatit relieson files asversionedarti-
facts.

BitK eeper[3andNUCM][26, 27] arebothdistributedrepos-
itories,andbothhave disconnected/replicatedodes But nei-
ther hasstrong coordinationfeatures. Both are modeledon
distantlyconnectednon-coordinatedevelopmenin theopen-
sourcestyle.

WebDAV[9][5] is a protocolfor distributed authoringand
versioningsupporton the web basedon an extendedversion
of HTTP. WebDAV includesboth locking, and someaggre-
gatestructurethat could be usedto representonfigurations.
WebDAV doesnot specifythe granularityof its artifacts— it
merelyidentifiesits versionedartifactsasentitieswith aURL.
WebDAV is designedo beflexible aboutexactly whatkind of
repositoryis accessedby the protocol. It may be possibleto
build aWebDAV basedront-endfor Coven.

5.4 Other Forms of Collaborative Support

Marny systems,including Adele[8], Vesta[10], Infuse[18]
andDSEE[12],have focusedattentionon softwarebuilding as
a differentaspecbf the collaboratve programmingproblem.
In large systemsmanagingouilds in the presencef multiple
usersmakingfrequentchangess anextremelycomple prob-
lem. All of thesesystemsausea variety of caching,process,
andpolicy managemergystemdor easingthe build problem.
Covendoesnotyet malke ary attemptto addresshis problem;
we hopeto male this afocusfor thefuture.

Adele[8], Infuse[18], and Marvel/Oz[2] have focusedon
building SCM systemsthat supportsoftware processes.In
thesesystemssoftwareprocessesuchastestingrequirements,
code reviews, and code appravals are all enforcedthrough
codeableprocesspecificationsThis allows the systento en-
force certaincooperation/coordinatiostyles,and assistpro-
grammersn the appropriatekinds of cooperatiorandcoordi-
nation.

6. CONCLUSION AND FUTURE WORK

In this paper we presentedhe Coven integratedprogram-
mingervironmentandsoftwareconfiguratiormanagemergys-
tem. This systemallows programmerso cooperateandcoor
dinatetheir work throughthe SCM systemthatmanagesheir

configuratiormanagemenwith changepackagesupport.ClearCasecode.By structuringtherepositoryasahierarchyandintegrat-

ing a collection of coordinationand communicatiorfeatures
into the hierarchicalktructurejt allows the coordinationfacil-
ities of the repositoryto be usedin a mannernwhich matches
the hierarchicalstyle of software developmentusedby large
softwaredevelopmenteams.

Our future directionspointin two maindirections: provid-
ing bettersupportfor collaborationandproviding morecom-
pletesoftwareconfigurationmanagemenrgupport.

To provide bettercollaboratve support,we planto initially
build betteruserinterfacesupportfor collaboration.Oncewe
have betterUl supportwe planto examinehow realprogram-
merswork with Coven,andseehow we canadaptthecollabo-
rative featuref the systemto bettersupportherealpractices
of collaboratve softwaredevelopment.In particular we plan
to explore morecommunicatiorfacilities thatcando moreto
allow programmergo resolhe conflictsdetectecby the locks
andinconsistenCA check-in.

In the software configurationmanagemerdrea,we planto
addresghe build problemin a collaboratve setting, includ-
ing integrating supportfor process-orientedepositorycon-
trols similar to thoseprovided by Adele.

7.. REFERENCES
[1] N. Belkhatir, J. Estublier andW. Melo. Adele2: A

supportto large softwaredevelopmentprocessin
Proceeding®f the 1stinternationalConfeenceonthe
Softwae Process1991.

[2] I. Ben-ShaubndG. Kaiser Federatingporocess-centered
ervironments:the 0z experience AutomatedSoftwae
Engineering5(1):97-132,Januaryl998.

[3] Bitkeeperinc. BitK eepersourcemanagementDetails
of operationWebpage;
“http://lwww.bitkeepercom/bk05.html”.

[4] P.CederqvistCVSRefeenceManual 1998.Available
onlineat
“http://lwww.loria.fr/ molli/cvs/doc/cvstoc.html.

[5] G.ClemmandC. Kaler. Versioningextensiongo
WebDAV. Technicalreport,IETF, 1999.

[6] Managingyoureassetsvith continuuscm synegy: 2nd
generatiortask-based¢hangenanagement.
web-pamphleat "www.continuus.com”2000.

[7] S.Dart. Spectrunof functionalityin configuration
managemergystemsTechnicalReport
CMU/SEI-90-TR-11CMU SoftwareEngineering
Institute,1990.

[8] J.EstublierandR. CasallasConfiguation
Management chapterThe Adele Configuration
ManagerWiley andSons Ltd., 1994.

[9] Y. Goland E. WhiteheadA. Faizi, S. Carter and
D. JensenHTTP extensiondor distributedauthoring—
WebDAV. TechnicalReportRFC2518,The Internet
Society February1999.

[10] A. Heydon,R. Levin, T. Mann,andY. Yu. Thevesta
approacho softwareconfigurationmanagement.
TechnicalReport1999-01,CompagSRC,1999.

[11] Y. Lin andS.Reiss.Configuratiormanagemenwith
logical structuresin Proceeding®f ICSE 18, pages
298-307,1996.

[12] D. Lubkin. Heterogeneousonfigurationrmanagement
with dseeln Proceeding®f the 3rd Workshopon
Softwae Configuation Management pagesl53-160,
1991.

[13] J.MacDonaldP. Hilfinger, andL. Semanzatd®RCS:
the projectrevision controlsystemIn Proceeding®f
SCMS8, pages33-45.SpringerVerlag,1998.

[14] B. MagnussorandU. Asklund.Finegrainedversion

controlof configurationsn COOP/OrmIn ICSE’96
SCM-6Workshop pages31-48,1996.

[15] H. OssheandW. Harrison.Combinationof inheritance
heirarchieslIn Proceeding®f the 1992Confeenceon
ObjectOrientedPrograms,Softwae, Languaesand
Applications pages25-40,1992.

[16] H. OssherM. Kaplan,W. Harrison,A. e.Katz,and
V. Kruskal. Subject-orientedompositiorrules.In
Proceeding®f the 1992Confeenceon ObjectOriented
Programs,Softwag, LanguaesandApplications pages
235—-250,1995.

[17] OTI. ENVY/Developer:Thecollaboratve component
developmentervironmentfor IBM visualageand
objectshareinc. visualvorks. Webpageavailable
onlineat: “http://www.oti.com/briefs/ed/edbrief5i.htm”.

[18] D. PerryandG. Kaiser Infuse:atool for automatically
managingandcoordinatingsourcechangesn large
systemsin Proceeding®fthe ACM ComputerScience
Confeence 1987.

[19] RationalClearCasePamphletat”www.rational.com”,

[20] S.Reiss.Simplifying dataintegration:thedesignof the
Desertsoftwaredevelopmentervironment.In
Proceeding®f ICSE18, pages398-407,1996.

[21] R. StocktonandN. Kramer The Sheetdypercode
editor. TechnicalReport0820,CMU Departmenbf
ComputerScience1997.

[22] SunMicrosystems|nc. TeamWareusers guides,1994.

[23] P. Tarr, W. Harrison,H. OssherA. Finkelstein,

B. NuseibehandD. Perry editors.Proceeding®f the
ICSE2000Mbrkshopon Multi-DimensionalSepaation
of Concerndgn Softwae Engineering2000.

[24] P Tarr, H. OssherW. Harrison,andJ. S. Sutton.N
degreesof separationMulti-dimensionalseparatiorof
concernsin Proceeding®f the 21stinternational
Confeenceon Softwae Engineering pagesl07-119,
1999.

[25] W. Tichy. RCS- asystemfor versioncontrol. Softwae:
Practiceand Experience7(15),1985.

[26] A. vanderHoek,A. CarzanigaD. Heimbignerand
A. Wolf. A reusabledistributedrepositoryfor
configurationrmanagemerpolicy programming.
TechnicalReportCU-CS-864-98University of
ColoradoDepartmenbf ComputerScience1998.

[27] A. vanderHoek,D. HeimbignerandA. Wolf. A
generic peerto-peermrepositoryfor distributed
configurationrmanagementn Proceeding®f ICSE18,
March1996.

[28] D. Weintraub The Not-So-Oficial ClearCasgage.
webpage1998.
URL="http://www.eclipse.netflavidw”.

[29] A. Zeller. Smoothoperationswvith squareoperatorsthe
versionsetmodelin ICE. In ICSE’'96 SCM-6
Workshop pages8—-30,1996.

