
Coven: Brewing Better Collaboration thr ough Software
Configuration Management

Mark C. Chu-Carroll
IBM T. J. Watson Research Center 30 Saw Mill

River Road Hawthorne, NY 10532, USA

mcc@watson.ibm.com

Sara Sprenkle
Department of Computer Science Levine
Science Research Center Duke University

Durham, NC USA

sprenkle@cs.duke.edu

Categoriesand SubjectDescriptors
D.2.6[Software Engineering]: ProgrammingEnvironments;
D.2.7[SoftwareEngineering]: Distribution,Maintenance,and
Evolution – VersionControl; D.2.9 [Software Engineering]:
Management– SoftwareConfigurationManagement,Program-
ming Teams;D.2.3 [Software Engineering]: Coding Tools
andTechniques

GeneralTerms
HumanFactors,Management

Keywords
Collaborative programming

ABSTRACT
Our work focuseson building tools to supportcollaborative software
development.We arebuilding a new programmingenvironmentwith
integratedsoftwareconfigurationmanagementwhich providesa vari-
ety of featuresto helpprogrammingteamscoordinatetheir work.

In this paper, we detail a hierarchy-basedsoftware configuration
managementsystemcalledCoven, whichactsasacollaborative medium
for allowing teamsof programmersto cooperate.By providing a fam-
ily of inter-relatedmechanisms,oursystemprovidespowerful support
for cooperationandcoordinationin amannerwhichmatchesthestruc-
tureof developmentteams.

1. INTRODUCTION
Modernsoftwarehasbecomeincreasinglycomplex asusers

demandmoresophisticatedfeatures.Thishasledto adramatic
increasein thesizeandcomplexity of thesourcecodefor soft-
waresystemsanda concomitantincreasein thesizeandcom-
plexity of theprogrammingteamsthatbuild thosesystems.In
suchan environment,programmersandtheir managersmust
dealwith the complex processof coordinationandcoopera-
tion amongthemembersof theprogrammingteam.

We arebuilding a programmingenvironmentcalledCoven
(COllaborativeVersioningENvironment),thathelpsprogram-
ming teamsmanagecoordinationin largesoftwareprojectsby
providing bettersupportfor modernlarge-scalesoftwarede-
velopmentpractices.Thecoreof thissystemis anew software
configurationmanagementsystemwhich actsasa coordina-
tion space,andwhichis tightly integratedinto anexperimental
collaborative programmingenvironment.

Currently, programmerson largeprojectsgenerallyusetwo
separatesetsof tools:aprogrammingenvironment,andasoft-
ware configurationmanagement(SCM) system. Most pro-
grammingenvironmentsare typically written as if the pro-
grammerwere working in isolation, without providing any
featuresto managecooperationor communicationwith other
programmers.The SCM managesthe programsourcecode,
andprovides a limited setof featuresfor managinginterac-
tion betweendifferent programmers.The SCM featuresfor
allowing interactionbetweenprogrammersaretypically fairly
low-level andprimitive, and the programmingenvironments
provide little to no supportfor integrating thesecooperative
SCMfeaturesinto theprogrammingexperience.

Covenprovidesbettersupportfor collaborativesoftwarede-
velopmentthanexisting SCM systems,by providing mecha-
nismsthat allow programmersto communicatewith onean-
otherandcoordinatetheir work. It providescapabilitiesthat
reflectto hierarchicalstructureof realprogrammingprojects,
wherethe project consistsof a large group of people,sub-
divided into groups,eachof which is responsiblefor some
part of the system. Coven’s flexible coderepositoryreflects
this structure,allowing large programmingteamsto coordi-
natetheirwork in differentways,andatdifferentgranularities
dependingon theneedsof, andrelationshipsbetween,thedif-
ferentprojectsub-teams.All of its capabilitiesareintegrated
with aprogrammingenvironmentspecificallydesignedfor use
in a team-basedenvironment.

Coven provides thesefacilities by building a hierarchical
coderepositorysystem,and integrating a family of features
into the hierarchicalstructure. It storescodeat a fine grain,
both temporallyandspatially, allowing programmersto man-
ageandsharecodein flexible ways. It provideslocking and
notification facilities in concertwith the hierarchicalrepos-
itory structurein a mannerwhich maximizesthe utility of
thesefacilities in a collaborative environment.Finally, it pro-
videsflexible browsingcapabilitiesthatallow differentproject
sub-teamsto reconciletheir differentstructuralviews of the

project.
For the mostpart, theseindividual featuresarenot novel.

Variousformsof replicationhavebeenusedbyTeamWare[22],
BitKeeper[3],Infuse[18],andAdele[8,1]. Our changetrack-
ing mechanismsaresimilar to thoseusedby PRCS[13].Locks
asacoordinationmechanismdatebackatleastto RCS[25]and
SCCS.Dynamic hierarchicalconfigurationshave beenhan-
dledbysystemsincludingGwydionSheets[21],ICE[29],Adele,
and Infuse. Fragmentbasedversioninganddynamicsource
file generationwerealsoexploredbyLin andReissin Desert[20].

However, theway thatCoven combinesthesefeaturesin a
collaborative settingprovidesa uniquesetof capabilitiesfor
coordinatingwork amongmany programmersthat cannotbe
providedby any of thesesystemsin isolation.

In therestof thispaper, wewill discusshow theCovenSCM
systemprovides bettersupportfor collaborative team-based
softwaredevelopmentthancurrenttools. In eachsection,we
will start by presentingan exampleof a typical team-based
developmenttask, and contrasthow currentsystemshandle
thattaskwith how it would behandledin Coven.

Thesescenarioswill betakenfrom acommonexampleproject.
We will usea fictional developmentprojectwhosegoal is to
createanew webbrowser. After analysisanddesign,theteam
is dividedinto two key sub-projects:onewhosetaskis to build
the userinterface,andonewhosetask is to handlenetwork
communicationandprotocolsupport.

The projectconsistsof six programmers,divided into two
teamsto work on thetwo key sub-projects.TheUI teamcon-
sistsof Alice (responsiblefor thedocumentmodelfor HTML),
Bob (HTML layout andrendering),andCindy (graphicsand
Javascript).Thecommunicationsteamconsistsof Dave(HTTP
protocol support),Evelyn (network interfaceandbuffering),
andFrank(caching,cookies,andsecurecommunication).The
UI teamis managedby George,andthenetwork teamby He-
len.

2. THE REPOSITORY
TheCovenrepositoryis theheartof oursystem.Thereposi-

tory is flexible, basedaroundfeaturesthatsupporthierarchical
development.TheCovenrepositoryis designedto supportthis
structureby providing coordinationmechanismsthat match
the hierarchicalstructureof the developmentgroupsthat use
it.

2.1 Hierar chical RepositorySupport
The Coven repositoryis actually implementedasa family

of relatedrepositoryreplicas,which arecoordinatedthrough
a subscriptionbasedmessagingsystem.The useof a reposi-
tory hierarchyallowsprojectsub-teamsto isolatetheirchanges
in progress,but still maintaincontactandcoordinationwith
therestof theproject.We will presenttheCovenhierarchical
repositoryin two parts:first,wedescribehow repositoryrepli-
cation and the hierarchywork to provide safechangeisola-
tion, andthenwewill describehow changesmadein isolation
arepropagatedoutward throughthe systemby programmer-
initiatedreleases.

2.1.1 ReplicationandChangeIsolation
TheUI teamis changingfrom an earlier HTML parser to

onebasedon thenew W3Cstandard documentobjectmodel.

Thisis a major internalchange to Alice’scode, with verylittle
outwardly visibleeffect.

While thechange is in progress,a copyof thesystemcon-
tainingthemodifiedcodewill notbecompilablebecauseparts
of thedocumentmodelare in thenew form, andpartsstill in
theold. If thechangesbecomevisibleto therestof theproject
group, theentire systemwill be unworkable:thecommteam
won’t be able to test their code, and even the restof the UI
teamwon’t be able to make progressuntil the changes are
completeandstable.

In simple SCM tools suchas RCS or CVS, oncecodeis
checkedinto therepository, it immediatelybecomesavailable
to all programmers.Thesesystemsmake somechangeiso-
lation possiblethroughbranching, which forms a fork in the
pathof versioning.However, in all but themostsimplecases,
managingforks and merges in software systemscan be ex-
tremelycomplex, andmostprojectstry to minimizethenum-
ber of branches,usingthemonly whenit cannotbe avoided.
In sucha system,Alice would not checkherchangesinto the
repositoryuntil shereacheda stablepoint whereit would not
likely interferewith the work of otherteammembers.In the
meantime,shewouldnotbeableto checkin partialstepswith-
out interferingwith otherteammembers.

Othersystems,suchasClearCase[19]andVesta[10],make
it mucheasierto createproject branches.In thesesystems,
programmerscancreatean isolatedspacein which to make
changesby producinga project branchwhich will later be
mergedinto the developmentstream.Continuus/CM[6]pro-
videsavariationof thismechanism,providingbranchingmech-
anismsthat are specifically tailored towardsgroup structure
andprojectwork-flow.

Finally, anotherfamily of systems,including Adele[8, 1],
CCC[7],andInfuse[18],useanapproachbasedonsub-repositories.
In thesesystems,hierarchiesof repositoryreplicasor sub-
databasesareusedto provide a structuredmethodof handling
changeisolation. Like othermembersof this family of sys-
tems,Coven is built arounda hierarchicalrepositoryreplica-
tion system.

TheCovenrepositoryis implementedasahierarchyof linked
repositoryreplicas.Thesystemprovidesamaster, centralpro-
gramrepository, which managesthe mastercopy of the sys-
tem.Anythingwhichhasbeencheckedin to themasterrepos-
itory is availableto all programmersworking on the project.
This masterrepositoryis replicatedby eachprojectsub-team,
to provide a privatesub-repository. The sub-repositorymay
be further replicatedto producesub-repositoriesfor smaller
sub-teamsuntil eachprogrammer(or eachsmall teamof pro-
grammers)hasa privatesub-repositorywherethey canplace
their own changes.Changescanbe checked into thesesub-
repositorieswithoutthosechangesbecomingvisibleto therest
of theprojectteam.(Wecall thisability to createfrequentiso-
latedprojectversionstemporal finegranularity.)

Thesub-repositoriesarelinked to their parentusinga sub-
scriptionbasednotificationfacility. Whenrelevanteventsoc-
cur, notificationsaretransmittedbetweenthelevelsof thetree.
For instance,when a unit of code is changed,information
aboutthechangeis transmittedfrom therepositorywherethe
changeoccurredto its parent,and if appropriatethe parent
transmitsinformationaboutthatchangeto its parentandto its
otherchildren.

Using this hierarchicalrepositorysupportin Coven, Alice

couldcheckintermediateversionsof herchangesinto aprivate
repositoryreplica,andnot worry aboutinterferingwith other
teammembers’work.

2.1.2 ReleaseManagement
Alice finishesher changesto thedocumentmodeland ren-

derer. Now, sheis readyto make the codeavailableto other
teammembers. Shechecksthecodein to therepository.

In a simpleSCM system,whena usercheckstheir codein
to therepository, it instantlybecomesthenew default version
for the entire project. Everyone,both workers on the same
subprojectandworkersondistantlyrelatedpartsof theproject,
will simultaneouslyreceive thenew version.

In moreadvancedsystems,themechanismsfor changeiso-
lationmake it easierto graduallymergechangesbackinto the
mainstreamof development.For example,in ClearCase,pro-
grammersaccesstherepositoryusingamechanismcalledview
expressionsto mapfilenamesin a conventionalfilesystemto
the ClearCaseversionspace.By using the appropriateview
expressions,programmerscaneasilycreateprojectbranches
to get a degreeof isolation,andthenmerge the branchback
into themaindevelopmentpathwhenit reachesastablepoint.
Theappropriateuseof branchesandview expressionscanal-
low differentprojectsub-teamsto maintaindifferentviews of
the project,andgraduallyreleasechangesto otherprogram-
mers. However, especiallyin the presenceof large numbers
of branchesandhierarchicalgroupstructure,theview expres-
sionscanbecomeextremelycomplicated,andcanleadto great
difficulty in managinga ClearCaserepository[28].

The advantageto Coven’s approachis that it provides a
verysimplestyleof isolationandre-integrationwhichmatches
naturaldevelopmentgroupstructureanddevelopmentstyles.
Changesareautomaticallyreleasedto widergroupsof usersin
a mannerwhich suitsthestructureof thedevelopmentgroup.
Thisnaturalpropagationof currentversionshappensautomat-
ically within thereplicatree,without thecomplexity of either
writing configurationexpressions(asin ClearCase)or manu-
ally managingthebranchingstructureof therepository(asin
Vesta).

As we discussedin theprevioussection,in Coven,changes
areinitially isolatedto a privaterepositoryreplica. Whenthe
programmersresponsiblefor that replicareacha stablepoint,
they needto beableto make their changesaccessibleto other
membersof the project. In Coven, this processis called re-
leasingasetof changes.

Changereleasesareintegratedinto therepositoryhierarchy.
Whenaprogrammerreleasesasetof changesfrom herreplica,
theentiresetof changesis copiedto herreplica’sparent.After
arelease,theparentrepositoryreflectsadifferentheadversion
of artifactsthanany othersub-repositoriesnot involvedin the
release.Theparentthensendsout a notificationto any other
child replicas,informingthemthatthey needto re-synchronize
their sub-repository. The replicas,uponreceiving this notifi-
cation,will alert usersof the repositoryof the availability of
changes.When the usersof the replica are ready, they can
re-synchronizewith the parentreplica, integratingthe newly
releasedchangesinto their replica. This resynchronizationis
initiatedby theuserof thereplica,ratherthanautomatically, in
orderto prevent abrupt,unexpectedchangesfrom interfering
with programmersin themiddleof sometask.

Becauseof thelockingmechanisms,usersrarelymake con-

currentchangesto asinglefragment.But undersomecircum-
stances,concurrentchangesareunavoidable. In sucha situa-
tion,Covenwill performanoptimisticmergeof theconcurrent
changes,andif any errorsaredetected,it will requireauserto
interveneandresolve theconflicts.

Usingthisfacility, Alice hastheability to releasethecodeto
aparticularsub-teamof theproject.Shecanstartby releasing
hercodeto theothermembersof theUI team.Whenthey’ve
testedit, and are satisfiedthat it’ s ready, it can be released
to a wider group. The hierarchicalrepositorysupportallows
teammemberswho work closelytogetherto sharecodemore
readily, and to integratechangesmore frequentlywith each
otherthanwith teammembersworking on moredistantparts
of thesystem.

2.2 Project-BasedVersioningModel
The repositorystorescode in a versionedprogramstore.

Thestoreperformsversioningatafinergrain,bothtemporally
andspatially, thantypical programrepositories.1 Supportfor
changepackagesandconsistenthierarchicalprojectsarepro-
vided througha flexible compositeartifact mechanism.The
useof sucha fine-grainedrepositoryenhancesCoven’s co-
ordinationfeatures,andenablestheuseof multi-dimensional
programorganizations,whichwe will discussin section3.

2.2.1 Fragment-BasedVersioning
Alice madechangesto therenderingcodeto supporta new

documentmodel.Whenshefinished,shecheckedthecodeinto
thesub-repositorysharedby theUI team.Thiscauseda wide-
rangingsetof changes, replacingsomeclassesentirely, and
altering parts of others. Thechanges ranged throughmany
files, but tendedto be localized to relatively small parts of
thosefiles.

In mostconfigurationmanagementtools,therepositorystores
versionsof sourcefiles. All of the facilitiesof the repository
from versionhistoriesto locks are managedin termsof en-
tire sourcefiles. Wereferto thisascoarsespatialgranularity.
Thiscoarsegranularitylimits theusefulnessof all of thosefa-
cilities in a collaborative setting:

� A programmerin theprocessof makingasetof changes
whena new changesetis releasedby someoneelsehas
difficulty assessingthecostof integratingthatchangeset
immediatelyversuswaiting until his changesarecom-
pleted.� Coarsegrainedlocks easilybecomea bottleneck,even
whenprogrammersaretrying to changenon-conflicting
sectionsof a givensourcefile.� Changehistoriesof a particularmethodor functionare
difficult to extractfrom theversionhistoryof thesource
file containingthemethod/function.

Thesolutionto thisis toperformversioningof smallerunits.
Severalsystems,includingCOOP/Orm[14]andDesert/Poem[11,
20] have createdsystemswith finer artifactgranularity.

Coven performsversioningon the level of the smallestin-
dependentprogramfragment. The exact sizeof a versioned�
Temporal fine granularity allows programmersto record

changehistory of small partsof the systemfrequently, with-
out creatinga complex versionhistory for the entireproject.
Spatialfinegranularityallowssmallercodeelementsto bever-
sioned,allowing moreprecisechangehistories.

fragmentin Covenis dependentonthelanguage(s)beingused.
For aprogramminglanguagesuchasJavaor C++,theprogram
fragmentsizeis generallyanentiremethod/function/fielddec-
laration.In a text-processinglanguagelikeLaTeX,a fragment
wouldbeaparagraphof text. (A figureillustratinghow aJava
sourcefile is partitionedinto versionedfragmentsis shown in
figure1.)

package collections;

import java.util.*;

public class Item extends Linkable {

 public void setNext(Linkable l) { ... }

 protected Linkable _next;

}

 public Linkable getNext() { ... }

Figure1: Division of Java sourceinto versionedfragments

Eachprogramfragmentis versionedindividually. This al-
lows programmersto view thechangehistoryof anindividual
item, andto easilyunderstandhow programelementswill be
affectedby the integration of a particularchangeset.It also
providesa vast improvementin termsof communicationand
coordination:any coordinationfacility providedby thesystem
canoperatein termsof relatively small programunits, rather
thansourcefiles.

Of course,versioningin termsof small fragmentsmeans
that the systemmustprovide tools for composingthesefrag-
mentsinto larger units. Beyond simply maintainingthe ver-
sionsof fragments,thesystemmustalsomaintainversionsof
linguistic structures(like classes)andstructuralentities(like
conceptuallyseparatedconcerns[24])thatarecomposedof col-
lectionsof relatedprogramfragments.

For instance,to representthechangehistoryof a class,the
changehistoryof its fragmentsis notsufficient. Over time,the
classmay addor remove methods.Thesechangesshouldbe
reflectedby achangein anartifactrepresentingtheclass.This
facility is providedin oursystemthroughtheuseof compound
artifacts, describedin thenext section.

2.2.2 CompoundArtifactsandtheProjectModel
AfterAlice checksin her code, therestof her teamstartsto

make changesto their owncodeto integrateinto thenew doc-
umentmodel.Afterseveral changesareapplied,they discover
a crucial bug in Alice’scode. Whileshefixesit, therestof the
teamneedsto revert to theold documentmodelcode.

In thesimplestSCM systems,reverting to anolderversion
of an entireprojectcanbe cumbersome.File basedsystems
likeRCSandCVSprovideamechanismcalledtagging, which
identifiesaversionof theproject.A tagis atextual labelwhich

can be applied to all artifacts in a particular project which
markstheversionof eachartifact thatwasin placewhenthe
tagwasapplied.The taggingmechanismis completelyman-
ual: the programmerchoosesto createa taggedversionand
manuallychoosesa namefor the tag. A tag is only placed
when a programmerexplicitly doesso, and the relationship
betweendifferenttaggedversionsis only asclearasthelabels
theprogrammerchoseto use.

Changepackagesystemslike ClearCase[19]make the job
significantlyeasier;sincechangesarealwaysrecordedin pack-
agesthatcollecta setof relateddeltas,onecansimply choose
thesetsof packagesto roll back.ClearCasealsoprovidesfea-
turesfor recordingexactlywhichartifactversionswereusedto
produceaparticularversion,allowing rollbacksbothto named
versions(correspondingroughly to tagsin simplerversions),
or particularpoints in time. Systemswith a strongnotion of
configurationsasversionedentities,including [8, 1, 10, 20]
amongmany others,retaincompleteinformationaboutthehis-
tory of all complex artifacts,from singlefilesto subsystems,to
entireprojects.Thesesystemsallow programmersto rollback
thesystemto any paststateof any versionedconfiguration.

Coven’s projectmodelis basedon thesubdivision of a pro-
grammingprojectinto sub-projects,calledcompoundartifacts
(CAs). A CA is a specificationof a setof versionedartifacts
whichareits members.Theseartifactsmay, in turn,befurther
CAs, nestedarbitrarily. Whena projectcontainsnestedCAs,
thecontentsof thoseCAsneednotbemutuallyexclusive: two
CAs maycontainoverlappingprojectsubsets.A CA is essen-
tially the samething as a configurationasdiscussedearlier;
we chooseto use a different term becauseCoven CAs can
be very fine-grainedentitiessuchas dynamicallygenerated
sourcefiles, while thecommonnotionof a configurationis a
higher-granularityentity. Covencompoundartifactscombine
both thecommonconfigurationnotionof mostSCM systems
and the virtual sourcefile notion of systemslike Desert[20]
andSheets[21].

The CAs themselvesareversionedartifacts,which change
over time. A versionof a CA specifiesthesetof artifactver-
sionswhich are its members. Betweenversionsof the CA,
not only cantheparticularartifactversionscontainedin a CA
change,but thesetof artifactsitself maychange.For instance,
in the examplewe discussedin the previous section,a class
would beimplementedby a CA containingall of theartifacts
thatcontainelementsof theclass.Whena methodis deleted
andthe classCA is checked in to the repository, the artifact
containingthatmethodwill beremovedfrom thenew version
of theclassCA.

CAs areusedfor a wide rangeof purposesin Coven. On a
finegrain,amemberdeclarationanditsdocumentationmaybe
containedin asingleCA; onacoarsergrain,all of theartifacts
thatmake up a particularclassdeclarationarecontainedin a
CA. Thishierarchyof everlargerCAscontinuesuntil wereach
the level wherethere is a single CA representingthe entire
project.

A CA versionrepresentsasnapshotof theversionsof apar-
ticular collectionof artifacts,asthey existedat somepoint in
time. Throughthe useof the CA system,Coven allows pro-
grammersto roll backany setof changes,returningany part
of thesystemto its exactstateatsomepoint in thepast.

CAs provide thebasisfor our modelof projectconsistency.
As we describedin theprevious section,thehistory of a CA

representsa snapshotof the stateof a collectionof member
artifactsat somepoint in time. We saythatsucha setof ver-
sionswhich coexistedtogethercanbereferredto asa consis-
tentprojectversion(CPV).

Ourmodelextendsthisnotionof consistency with temporal
fine granularityof CPVs.A givenCA is subdivided into sub-
CAs. The CA hasa history of CPVsthat representthe state
of consistentversionsof the entiresetof artifactscontained
within theCA. Thesub-CAsalsohave their historyof consis-
tent versions. The sub-projectsmay have CPVsthat arenot
componentsof any CPV for the entireproject— they repre-
sentintermediatestatesof the subprojectbetweenconsistent
versionsof theenclosingproject.

In termsof our example,Alice hasa consistentversionhis-
tory of thesubprojectcontaininghercodein thehistoryof her
particularsubprojectCA. While sheis working on the new
documentmodel,shecontinuesto createnew consistentver-
sionsof her subprojectCA. Until she’s readyto releasethe
codeto her co-workers,shedoesnot createa consistentver-
sionof theUI subprojectCA — herconsistentversionsarenot
readyto integratewith the restof theproject. But within her
subproject,shehasa full historyof thechangesshemade,and
shecaneasilyrevert to any paststateof thatsubproject.

This useof hierarchical(sub)projectCAs meansthat the
history mechanismscanoperateat multiple temporalgranu-
larities. Thehistoryof theCA representingtheentireproject
is fairly coarse,representinga history of stablestatesof the
primarycomponentsof thesystem.Within any givenversion
of the entireproject,thereexists a history of how eachcom-
ponentof that systemevolved to the new version. Program-
merscantake advantageof this by having a precisehistoryof
their own work, by being able to maintainflexible isolation
andintegrationof their changes,andby beingableto view the
changehistoriesof otherpartsof thesystemwith thenecessary
degreeof detail.

2.2.3 ConsistencyDetails
Our useof potentially overlappingsubprojectCAs intro-

ducesaconsistency requirementfor CA versions.For any arti-
factcontainedwithin a CA, theremustbeexactly oneversion
of thatartifact.

Foranexampleof why thisconsistency requirementisneeded,
considerthe following. Given a systemrepresentedby a CA�

, which containssomesetof sub-CAsincluding � and � .
Version

���
of
�

containsversions��� and �
	 of � and � . ���
and ��	 bothcontainaversionof asimpleartifact
�� . Someone
changes
 , producingversion
���� � . Shechecksin this change
usingsub-project� , producingversion ��� � � . Now shetries
to checkin project

�
, with � � � � and �
	 asmembers.If a

version
��� � � wascreated,it would containboth versions
��

and
 ��� � of
 .
Thesolutionto this problemusesa featurelogic muchlike

thatdescribedin [29]. (Anothersolutionto thisproblembased
on a differentapproachis describedin [8].) EachCA version
is representedusingaspecificationcontainingalist of features
describingits members.For eachartifact, thereis a version
feature,specifyingtheversionof thatartifactcontainedwithin
that CA version. Whena new CA versionis created,the ar-
tifactspecificationsof all artifactstransitively includedin the
CA aremerged. The mergeoperationfor theartifact version
featuresis definedto produceanerror for non-matchingver-

sionvalues.
Whensuchanerroroccurs,thesystemrejectsthecheck-in

of codedue to the inconsistency. It generatesa notification
which is sentto the programmerwho performedthe check-
in and to the programmerswho checked in the CA versions
involvedin theconflict,sothattheinvolvedprogrammerscan
work togetherto resolve the problem. The systemcanassist
in theresolutionof thisconflictby providing theprogrammers
with a diff3-like view of their conflictingcode,allowing them
to identify andresolve thekey differences.

2.3 Locking and Coordination
Thekey to coordinationbetweenmembersof aprojectteam

is communication.Coven providesa setof facilities that al-
low theSCM systemto supportandenhancecommunication
betweenteammembers.Theprimarycommunicationmecha-
nismprovidedby Coven is calleda soft lock. A soft lock al-
lowsprogrammersto attachnotificationsto partsof theproject
in a way that allows them to keepin touch with other pro-
grammers.We will first presentthe notion of soft locks,and
describehow they allow programmersto communicate.Then
we will describehow soft locksareintegratedwith therepos-
itory hierarchyto provide a family of different coordination
mechanismsoperatingatdifferentgranularities.

2.3.1 SoftLocks
SinceAlice is busyreplacingtheold documentmodelcode,

it’ simportantthatotherprogrammersnotmakechangesto the
codethat she’s replacing, or their changeswill causehard to
resolveconflictslater.

Many SCM systemsprovide somekind of mechanismfor
locking code. This allows programmersto mark a sectionof
codethatthey intendto changeas“off limits”, to preventother
programmersfrom makingconflicting changes.Theselocks
provide a powerful coordinationmechanism,allowing a pro-
grammerto notify othersabouttheiractivities to preventadif-
ficult andexpensive problem. But in currentSCM systems,
locks have a major weakness:sinceSCM systemstypically
operateon entiresourcefiles,a lock limits accessnot to a sin-
gleprogramconstruct,but to anentiresourcefile. Whenapro-
grammerlocksa sourcefile to make a changeto oneprogram
fragmentlocatedin that sourcefile, the entirefile is locked,
andno onecanmake changesto any otherpartof thesystem
containedin that file. This improperlock granularitycauses
lockingto becomeamajorbottleneck,whereprogrammersin-
terferewith oneanothernot becauseof genuineconflict but
becausethey needto work with different programelements
thathappento belocatedin thesamesourcefile.

In responseto thisproblem,many SCMsystemshaveadopted
an optimistic approach,in which they assumethat program-
mersare well-coordinatedfrom outsideof the SCM system
andthat conflictswill occurvery rarely. They thereforedis-
card locking andallow programmersto edit files asneeded.
Whenchangesarechecked in to therepository, theSCM sys-
tem checksthat thereareno conflicts, and requiresthe pro-
grammerto resolve theconflictsimmediatelyif they occur.

Coven takesa middle-groundapproach.Locking canbe a
very seriousbottleneckto a developmentteam.But thatdoes
notmeanthattoolsshoulddepriveprogrammersof ausefulco-
ordinationfacility. Coven thereforeprovidesa facility called
a soft lock. A soft lock is placedon codeby a programmerto

notify othersthatsheis makingchanges.Associatedwith the
soft lock is a log messageplacedby the programmer. When
anotherprogrammertries to changesoft locked code,he is
notified that the codeis locked, andpresentedwith the lock
message.If hedecidesto goaheadandmakechanges,thepro-
grammerwhoplacedthesoft lock is notifiedof thosechanges,
so that shecanbe awareof any impendingconflicts. When
suchaconflict is detected,thesystemallows theinvolvedpro-
grammersto know in advanceof thepotentialfor a problem,
so that they can discussthe appropriateaction. The system
canprovidesomecommunicationmechanismsto assistin this
process.

As with all of the othermechanismsof Coven, soft locks
areintegratedinto the repositoryhierarchy, allowing locks to
be placedat many differentgranularities,from locking small
programunits to locking entireprojects. At the finestgrain,
soft lockscanbeattachedto individualprogramfragments.At
coarsergrains,soft lockscanbeattachedto any CA, whichim-
plicitly attachesthe lock transitively to all artifactscontained
by theCA. Thus,a singlelock cancover anything from a sin-
gle fragmentto anentireproject. Thesystemallows usersto
choosethelock granularitywhich is bestsuitedto thetaskthat
they areperforming,choosingthe tradeoffs betweenmanag-
ing largenumbersof smalllocks,versussmallgroupsof large
locksaccordingto theirparticularrequirements.

2.3.2 Hierarchical Lock Management
OnceAlice haschecked in her code, othermembers of her

sub-teamcan look at and alter the codethat she’s checked
in to therepository. Shedoesn’t needto benotifiedeach time
they makea change; however, shestill needsto knowif anyone
fromthe communicationssub-teamalters anythingin theold
codethat shehasreplacedbut hasnot releasedto themyet.

In mostSCM systems,a systemartifacton a given project
branchiseitherlockedor unlocked.To allow codetobelocked
for someusers,but not for othersrequiresbuilding project
branches,with the difficulties discussedearlier. Coven uses
therepositoryhierarchyto allows a moreflexible locking sys-
temwithouthaving toexplicitly managemultipleprojectbranches,
andwhile retaininga singlelinearchangehistoryfor eachar-
tifact. It doesthisby allowing locksto beplacedoverportions
of therepositoryhierarchy. A lock maybeplacedat any level
in thehierarchy, andmaycovereithertheentiresub-hierarchy,
or mayexcludesections.In this example,Alice couldplacea
soft lock on thecomponentsthatsheis changingin a manner
thatlocksthecomponentsover theentirerepositoryhierarchy,
excludingonly thesub-repositoryusedby hersub-team.

Internally, eachrepositoryreplicamaintainsinformationabout
locked artifactsin the repository. Lock information is trans-
mittedbetweenreplicalevelsasnecessary.

Whena programmersynchronizesher replicawith its par-
ent,shemaychooseto lock somepart of thesystem(that is,
someartifact or collection of artifacts)that she(or her sub-
team)plan to change.This lock may be placedin a manner
which locks the codethroughoutthe entirereplicahierarchy,
excludingtheparticularsub-hierarchywherethey will beper-
formingthechanges.After suchalock,programmerswhouse
the unlocked replicaor childrenof the unlocked replica can
make changesto the locked codewithout triggeringthe lock
notifications,but programmersoutsideof this sub-hierarchy
cannot.

Alice

Bob

Cindy

Evelyn

Frank

Dave

UI

Comm

Master

Figure2: An exampleof hierarchical locking

An exampleof therepositoryreplicationhierarchyusedby
our project teamis illustratedin figure 2. If Alice locks the
codefor thedocumentmodelto makechangesin theUI team’s
repositoryreplica(illustratedby thecirclearoundtheUI replica),
thenthelock is in placethroughtheentirehierarchyexcluding
the sectionsurroundedby dottedlines: that is, in the master
repositoryreplicaandin all of thecommteam’s sub-replicas.
Similar locking/coordinationfeaturesarediscussedin [8] and
[18].

Using this mechanism,Alice could releasethecodeto her
project sub-team,allowing them to useand alter the newly
releasedversionof her code,but shewill still receive notifi-
cationswhenanyoneelsetries to changeany membersof the
CA thatshewasworking on.

3. MULTIDIMENSION AL PROGRAM OR-
GANIZA TION

Alice andBobwork togetheron oneof thekey piecesof the
userinterface: thedocumentrenderingframe. But they have
verydifferentviewsof it.

Alice views it as a canvas,uponwhich documentelements
paint themselves.Her view is basedon the documentobject
modelitself, ontheclassesthatmakeupthestructureof a doc-
ument,andhowthat structure will paint itselfontothescreen.

Bobviewsit asa containerfor userinterfaceelements.Some
of the elementsthat get paintedonto the screenare actually
links, and clicking on themshouldcausethe user interface
to react. Bob doesnot particularly care aboutthe document
model:hejustknowsthatcertainkindsof elementswill bein-
volvedin UI actionsthat he needsto program. He needsto
knowwhere links are locatedon thescreenandhowlayout is
done. But hedoesnot particular care aboutthedetailsof the
documentstructure thatunderlyit.

For Alice, the natural way of looking at the program is
throughan object-orientedASTpattern. A documentis rep-
resentedas a parse tree, where each nodein the tree repre-
sentsa documentelement. Each documentelementtype is
implementedas a class,which hasa family of methodsthat
implementthe operationsof the class. Renderingis just one
methodamongthemany. Alice wantsto view thecodeorga-
nizedaccording to thoseclasses.For her purposes,the ideal
organizationof thecodeinto filesputsall of thefunctionsfor
a givenclassinto its ownsourcefile.

Rectangle AnchorElement.calculateSizeAndPosition(Point origin)

Color AnchorElement.getBackgroundColor();

void AnchorElement.handleMouseEvent(MouseEvent mevent);

Color AnchorElement.getForegroundColor();

Color FrameElement.getBackgroundColor();

Rectangle FrameElement.calculateSizeAndPosition(Point origin);

void FrameElement.handleMouseEvent(MouseEvent me);

Color FrameElement.getForegroundColor();

�
�
�

� �
Slice 1: Functional layout component
Slice 2: Functional event handling component
Slice 3: Functional color component

Slice A: Structural AnchorElement component
Slice B: Structural FrameElement component

Figure3: Orthogonal Program Organizations

For Bob,theobject-orientedpatternis distracting. Whathe
caresaboutis a limited subsetof thecode:howlayoutis per-
formed. He wantsto be able to follow the data and control
flow of layout on the screen. For him, the bestcodeorgani-
zationwould be onewhere all of the placementmethodsare
together, so that he could follow thecontrol flow throughthe
layoutmethods.

In conventionalprogrammingenvironmentsandSCM sys-
tems,programmersmustacceptoneorganizationof thecode.
A given programfragmentis locatedin one, and only one
sourcefile. The programmersmustagreeon a canonicalor-
ganization.In our example,thatmeansthateitherBob or Al-
ice mustaccepta codeorganizationwhich is not well-suited
towardstheir task.

While thereis a whole new field of software engineering
work,calledMultidimensionalSeparationof Concerns[24,23],
dedicatedto this problem,very few SCM systemshave ad-
dressedit. The CMU Gwydion project[21] startedwork on
this, but never reachedthepoint of building a completeSCM
repository. Lin andReiss’s Desert[20]systemprovidesanap-
proachsimilarto thatof Coven,but basedonfragmentshaving
a primaryhomein onesourcefile.

Coven takesadvantageof fragmentbasedversioningto al-
low programmersto generatemultipleorthogonalprogramor-
ganizations.Eachfragmentis handledseparatelyby therepos-
itory. Programmersaccesstherepositoryby checkingout dy-
namicallygeneratedcollectionsof programfragmentscalled
virtual sourcefiles(VSFs). Eachprogramfragmentcanbelo-
catedin many differentVSFs,eachof whichrepresentsapiece
of a differentdecompositionof the program. Alice andBob
caneachhave their own optimalprogramorganization,with-
out interferingwith eachother. Internally, a VSF is simply a
subprojectrepresentedin amannerwhichis usefulfor viewing
a collectionof programfragmentsin a convenientway.

Figure3 illustratesa view of a small part of the program,
andtwo orthogonalprogramorganizations.Slices1, 2, and3
form a decompositionof theprograminto componentsbased
on functional elements;slicesA and B form a decomposi-
tion of theprograminto componentsbasedon classstructure.
Thedecompositioninto functionalcomponentsis theprogram
view thatBob prefers,while thedecompositioninto classesis
Alice’s preference.By usingVSFs,Bob andAlice caneach
usetheprogramorganizationbestsuitedto the taskthat they
areperforming,withoutany conflict.

3.1 Query BasedRepositoryAccess

Bob wantsto change someeventhandlingmethodsin the
browser. He needsto look at thelayoutsubsectionof thedoc-
umentmodelcodeto changehoweventsaresignalledbysome
elementsof therendereddocument.Thecodeis structuredac-
cording to theDOM specification,and is therefore organized
by classesin the DOM hierarchy. This organizationscatters
therelevantcodeacrossmanydifferentsourcefiles.

As we discussedin the previous section,in a conventional
SCMsystem,Bobwouldneedto lookatcodescatteredthrough
many differentsourcefiles. With Coven,hecoulduseavirtual
sourceorganizationthatallowshim to virtually restructurethe
codeinto thefunctionalelementsthathewants.However, gen-
eratingthisnew organizationisdifficult. Specifyingaprogram
organizationby identifying exactly what fragmentsshouldbe
includedin eachVSF is prohibitively difficult.

Coven simplifies the identificationprocessby providing a
querylanguagethatprogrammersuseto specifyhow to gen-
eratethedifferentprogramorganizations.Eachtime a virtual
sourcefile is checkedout of theSCM system,thesetof frag-
mentscontainedin thatVSF is dynamicallygeneratedby exe-
cutinga query.

Coven’s querylanguageconsistsof a simplecoreto which
queryextensionscan be added. The initial systemprovides
a set of primitive query types, which can be assembledto
form complex queries. Usersof the systemare free to add
new querytypes,whichcanbeeithercompositionsof existing
queries,or entirenew componentsthataredynamicallylinked
into thesystem.

Eachvirtual sourceis specifiedby a queryline with a pred-
icatethatspecifiesa conditionthatfragmentsmustmeetto be
includedin thesource.Thesystemscanstherepository, gen-
eratingthe collectionof fragmentswhich shouldbe included
in theVSF. Oncethefragmentsarecollected,theVSF is gen-
eratedin a form determinedby its formatclause.By default,
theVSFformatis anXML documentwhich is usedinternally
by theCovenenvironment.

VSFscanbeexportedin otherformatsby specifyingavalue
for theformatclause.Theformatclausespecifiesthenameof
a componentcalledanexporter, which is usedto generatethe
VSF in a particularform. Programmersare free to addnew
exportersto the system,allowing them to generateVSFs in
any formatconvenientfor theiruse.Eachexporteris generally
pairedwith animporter, whichallows thesystemto readcode
into therepositoryfrom otherformats.

A typical exampleof the useof exportersis shown in fig-
ure 4, wherea format type ”java” is specified.This exporter
would generatetheVSF in theformatof a typical Java source

file, which is usableby a standardJava compiler, or any other
tool that readsJava sourcefiles. Throughthe useof a setof
simple filter programs,even timestampdependenttools like
Unix “make” caneasilybemadeto interoperatewith Coven.

// Example 1
source PerformLayout =

select fragment from browser.ui where
(fragment impl calcSizeAndPosition)

// Example 2
source MouseEvents =

select fragment from browser.ui where
(fragment impl handleMouseEvent) or
(exist other from browser.ui where

(other impl handleMouseEvent)
and fragment dependsOn other)

// Example 3
source AnchorElement.java =

select fragment from browser.ui where
(fragments memberOf ’AnchorElement’)
format ’Java’

view Functional = � PerformLayout,
MouseEvents �

Figure 4: Example of queries for the functional organiza-
tion

In figure4, weillustrateexamplequeriesfor aCovenrepos-
itory containingJava code. The first queryselectsthe setof
fragmentsthat contain implementationsof a methodnamed
“calcSizeAndPosition”.The secondis similar in that it also
selectsall methodsthatimplementaparticularmethod(in this
case,“handleMouseEvent”, but it alsoincludesfragmentson
which implementationsof “handleMouseEvent” depend.The
third exampleillustrateshow codecanbewithdrawn from the
repositoryto beusedby othertools. It selectsthesetof frag-
mentsthataremembersof theclass“AnchorElement”,andex-
portsthemasa standardJava sourcefile, with fragmentiden-
tity informationencodedinto comments.ThegeneratedVSF
will beusableby conventional,non-Covenbasedtools,includ-
ing standardcompilers.

Example4 illustrateshow VSFsareusedto generatepro-
gramorganizations.A programorganization(calleda view in
the querylanguage)is nothingmorethana collectionof vir-
tualsourcefilesthatrepresentoneorganizationof theprogram
source.

Theuseof query-basedrepositoryaccesscanleadto added
complexity, becauseprogrammersmayneedto write complex
queryexpressionsto getexactly thesetof fragmentsin which
they are interested. But we believe that this tradeoff is ac-
ceptable:ourquerylanguagemakesroutinequeriesextremely
simple, but provides the power to do more complex things.
Thesimplequeriesfor simplecasespreventCovenfrom being
significantlymorecomplex thanmoreconventionalsystems.
For the advancedcaseswherecomplex queriesarerequired,
we areproviding a significantcapabilitywhich is notpossible
usingconventionalsystems.

Becauseall of Coven’s coordinationmechanismsarepro-
videdin termsof individualfragments(andcollectionsof frag-
ments),the coordinationtools work equallywell even when
programmersareviewing thecodethroughdifferentprogram

organizations.

4. USER INTERFACE SUPPORT
The useof an SCM systemlike Coven introducesadded

complexity to the taskof the programmer. The programmer
gainsexpressivenessandorganizationalflexibility at the cost
of dealingwith queries,consistency, andthe lossof intrinsic
context. To hide the addedcomplexity, a programmingen-
vironmentcan make the compositionand decompositionof
programmingfragmentsandthemanipulationof multiplepro-
gramorganizationsmoretractable.

Wehavebuilt aprogrammingenvironmentwhichallowsthe
easyintegration of external tools into a flexible linked-pane
styleprogrammingenvironment.This environmentintegrates
all of thecoordinationandversioningfacilitiesof Coven into
acohesive programmingenvironment.

Theuseof suchanintegratedenvironmentis crucial.With-
out it, notification mechanismssuchas soft locks lose their
immediacy, which is a key to strongcoordination.

Beyond simply integratingCoven’s features,the program-
ming environmentenhancesthemby making themeasierto
use. For instance,the environmentsimplifies the processof
generatingnew queries,by providing tools to guideprogram-
mers.It easestheuseof differentviews,by providing toolsto
rapidly andeasilyswitch betweenthemwithout lossof con-
text.

For instance,considerDave,workingontheHTTPprotocol
support. He needsto integratehis codewith Alice’s docu-
mentmodelcode.But hisview of thesystemis quitedifferent
from hers.Whenhehasa questionaboutAlice’s code,hecan
askher for an explanation. Shecanuseher environmentto
senda descriptionof herscreento Dave; Dave’s environment
will thenshow what Alice is seeing.OnceDave’s questions
areanswered,hecanswitchhis environmentbackto his pre-
ferred view, highlighting the codethat he saw from Alice’s
viewpoint.

5. RELATED WORK

5.1 CooperativeEnvir onments
The COOP/Orm[14]projecthasdevelopeda collaborative

SCMsystemintegratedwith aprogrammingenvironmentwith
goalsvery similar to Coven. COOP/Orm,however, usesan
optimisticapproachwith synchronousupdates.In sucha sys-
tem,programmerscanchangeany codeat any time, with the
changesimmediatelyreflectedin the workspacesof all pro-
grammersusing the system,and with the systemdetecting
conflicts. Coven takesa differentapproach,basedon our be-
lief that in an environmentwith large numbersof program-
mersworking on a project,immediateupdatesaretoo disrup-
tive to individual programmers.Insteadof the immediateup-
dateapproachof COOP/Orm,we have insteadoptedto use
thehierarchicalreplication/releasestrategy with soft locking.
COOP/Ormalsousesafine-grainedversioningmodelwith hi-
erarchicaldocuments,similar in somewaysto our modelof
fine-grainedversioningwith hierarchicalcomposition. They
providefine-grainedversioningdown to afiner level thanwhat
Covenprovides,performingversioningonthelevel of individ-
ual programminglanguageexpressions.We believe that the
costsof the complexity imposedon the programmerandthe

environmentto dealwith suchfine granularityis greaterthan
thebenefitthatit provides.

Systemsincluding TeamWare[22] and Infuse[18] provide
replicationsupportsimilar to ours. We believe that our sys-
tem takes betteradvantageof this replicationhierarchybe-
causeof its integration with other features,including query
basedrepositoryaccessandsoft locks.

Adele[8, 1] providesextremelypowerful supportfor soft-
warebuilding, alongwith aform of hierarchicalsupportbased
on sub-databases.It doesthis throughtheuseof rathercom-
plex objectdeclarationswhich expressdependenciesbetween
objectsin therepository. This mechanismallows to storeand
versionnot just the original sourceartifacts,but all interme-
diate productsas well. Similarly, Vesta[10],while not pro-
viding hierarchicalsupport,doesprovideexcellentsupportfor
changeisolation,while alsomanagingbuilds andversioning
of intermediateresults.

5.2 Dynamic Viewsand Multidimensional
Organization

The ideaof multiple programviews basedon rearranging
sourceorganizationswas explored by the Gwydion project
from CMU[21]. TheGwydiongroupbuilt a hyper-codepro-
grammingenvironmentcalledSheets. Like Coven,theSheets
systemsubdivides code into programfragmentsand allows
fragmentstobedynamicallyassembledinto new virtual source
files, which they call sheets.The Sheetsenvironmentuseda
query languageto generatesheetsviewed by their UI. How-
ever, the Sheetssystemdid not integrateSCM with this dy-
namicview support.Further, this view systemwasbasedon
their useof a repositorywhich could only be accessedfrom
within their system. Lin andReiss[11]provide very similar
functionality in their desertsystem,completewith fragment-
level versioning,but usinga differentmodelof repositoryac-
cess.

TheHyper-Jprojectat IBM, boththroughtheirhyperspaces
work[24], andtheir earliersubject-orientedprogramming[15,
16] haveexploredthenotionof multidimensionalprogramor-
ganizations.Their focushasbeenon implementingsoftware
usingmultidimensionalseparationof concerns,andtheninte-
gratingthoseseparatedconcernsthroughapowerful composi-
tion system.

5.3 Repositories
IBM’ sVisualAgeSmalltalkincludesafine-grainedprogram

repositorywith somecollaborativefacilities,calledENVY[17].
ENVY includessomelockingfacilitiesandareplicationmodel
that resemblesours in many ways. ENVY presentsa model
of theprojectthat strictly dividesthesysteminto subpartsin
staticways.It provideslockingsupportstrictly in termsof this
staticallyimposedprogramorganization.Thissystemis notas
flexible asCoven, wherenew organizationsmay be dynami-
cally generatedasneeded,andlockscanbeusedto coordinate
work on any collection of codedesiredby the programmer.
Further, ENVY providesno queryenginenor any othertools
for generatingcustomviews of sourcecode. Becauseof the
tight integrationwith therepositoryandthelackof any mech-
anismlikeprogrammableour formatmechanismfor exporting
code,third partytoolsaredifficult to usewith their system.

ClearCase[19]andrelatedSCM systemsprovide powerful
configurationmanagementwith changepackagesupport.ClearCase

provides this supporttransparentlyby presentingitself as a
network file system,with the changepackagesupportnor-
mally hiddenfrom the user. Changepackagesdo provide a
form of project consistency, but do not have the expressive
power of our consistency model. In particular, ClearCasehas
no notion of a consistentsubproject,which prevents or re-
strictstheuseof theflexible coordinationmechanismssimilar
to thoseprovidedby Coven. Beyondactingasa codereposi-
tory, ClearCasealsoprovidessignificantdevelopmentsupport
in integratingbug-tracking,associatingchangepackageswith
bug fixes,andbaselineandbuild management,noneof which
arecurrentlysupportedby Coven.

Conventionalversioncontrol systems,including RCS[25],
CVS[4],andPRCS[13],all allow programmersto interactthrough
a commoncoderepository. All provide sometools for pro-
grammerinteraction.CVSandPRCSbothuseoptimisticmeth-
odswith conflict detectionandresolution,whereasRCSuses
exclusive locking. CVS and RCS lack project consistency
models. PRCShasa strongprojectconsistency modelquite
similar to oursexcept that it relieson files asversionedarti-
facts.

BitKeeper[3]andNUCM[26,27] arebothdistributedrepos-
itories,andbothhavedisconnected/replicatedmodes.But nei-
ther hasstrongcoordinationfeatures. Both are modeledon
distantlyconnected,non-coordinateddevelopmentin theopen-
sourcestyle.

WebDAV[9][5] is a protocol for distributedauthoringand
versioningsupporton the web basedon an extendedversion
of HTTP. WebDAV includesboth locking, andsomeaggre-
gatestructurethat could be usedto representconfigurations.
WebDAV doesnot specifythegranularityof its artifacts— it
merelyidentifiesits versionedartifactsasentitieswith aURL.
WebDAV is designedto beflexible aboutexactlywhatkind of
repositoryis accessedby the protocol. It may be possibleto
build a WebDAV basedfront-endfor Coven.

5.4 Other Forms of CollaborativeSupport
Many systems,including Adele[8], Vesta[10],Infuse[18]

andDSEE[12],have focusedattentiononsoftwarebuilding as
a differentaspectof thecollaborative programmingproblem.
In largesystems,managingbuilds in thepresenceof multiple
usersmakingfrequentchangesis anextremelycomplex prob-
lem. All of thesesystemsusea variety of caching,process,
andpolicy managementsystemsfor easingthebuild problem.
Covendoesnotyetmake any attemptto addressthisproblem;
wehopeto make this a focusfor thefuture.

Adele[8], Infuse[18], and Marvel/Oz[2] have focusedon
building SCM systemsthat supportsoftware processes.In
thesesystems,softwareprocessessuchastestingrequirements,
code reviews, and code approvals are all enforcedthrough
codeableprocessspecifications.Thisallows thesystemto en-
force certaincooperation/coordinationstyles,andassistpro-
grammersin theappropriatekindsof cooperationandcoordi-
nation.

6. CONCLUSION AND FUTURE WORK
In this paper, we presentedthe Coven integratedprogram-

mingenvironmentandsoftwareconfigurationmanagementsys-
tem. This systemallows programmersto cooperateandcoor-
dinatetheir work throughtheSCM systemthatmanagestheir
code.By structuringtherepositoryasahierarchyandintegrat-

ing a collectionof coordinationandcommunicationfeatures
into thehierarchicalstructure,it allows thecoordinationfacil-
ities of the repositoryto be usedin a mannerwhich matches
the hierarchicalstyle of softwaredevelopmentusedby large
softwaredevelopmentteams.

Our futuredirectionspoint in two maindirections:provid-
ing bettersupportfor collaborationandproviding morecom-
pletesoftwareconfigurationmanagementsupport.

To provide bettercollaborative support,we planto initially
build betteruserinterfacesupportfor collaboration.Oncewe
havebetterUI support,weplanto examinehow realprogram-
merswork with Coven,andseehow wecanadaptthecollabo-
rativefeaturesof thesystemto bettersupporttherealpractices
of collaborative softwaredevelopment.In particular, we plan
to exploremorecommunicationfacilities thatcando moreto
allow programmersto resolve conflictsdetectedby the locks
andinconsistentCA check-in.

In thesoftwareconfigurationmanagementarea,we planto
addressthe build problemin a collaborative setting, includ-
ing integrating supportfor process-orientedrepositorycon-
trols similar to thoseprovidedby Adele.

7. REFERENCES
[1] N. Belkhatir, J.Estublier, andW. Melo. Adele2: A

supportto largesoftwaredevelopmentprocess.In
Proceedingsof the1stInternationalConferenceon the
Software Process, 1991.

[2] I. Ben-ShaulandG. Kaiser. Federatingprocess-centered
environments:theozexperience.AutomatedSoftware
Engineering, 5(1):97–132,January1998.

[3] Bitkeeper, Inc. BitKeepersourcemanagement:Details
of operation.Webpage;
“http://www.bitkeeper.com/bk05.html”.

[4] P. Cederqvist.CVSReferenceManual, 1998.Available
onlineat
“http://www.loria.fr/ molli/cvs/doc/cvstoc.html.

[5] G. ClemmandC. Kaler. Versioningextensionsto
WebDAV. Technicalreport,IETF, 1999.

[6] Managingyoureassetswith continuuscm synergy: 2nd
generationtask-basedchangemanagement.
web-pamphletat ”www.continuus.com”,2000.

[7] S.Dart.Spectrumof functionalityin configuration
managementsystems.TechnicalReport
CMU/SEI-90-TR-11,CMU SoftwareEngineering
Institute,1990.

[8] J.EstublierandR. Casallas.Configuration
Management, chapterTheAdeleConfiguration
Manager. Wiley andSons,Ltd., 1994.

[9] Y. Goland,E. Whitehead,A. Faizi, S.Carter, and
D. Jensen.HTTPextensionsfor distributedauthoring–
WebDAV. TechnicalReportRFC2518,TheInternet
Society, February1999.

[10] A. Heydon,R. Levin, T. Mann,andY. Yu. Thevesta
approachto softwareconfigurationmanagement.
TechnicalReport1999-01,CompaqSRC,1999.

[11] Y. Lin andS.Reiss.Configurationmanagementwith
logical structures.In Proceedingsof ICSE18, pages
298–307,1996.

[12] D. Lubkin. Heterogeneousconfigurationmanagement
with dsee.In Proceedingsof the3rd Workshopon
Software Configuration Management, pages153–160,
1991.

[13] J.MacDonald,P. Hilfinger, andL. Semanzato.PRCS:
theprojectrevision controlsystem.In Proceedingsof
SCM8, pages33–45.SpringerVerlag,1998.

[14] B. MagnussonandU. Asklund.Finegrainedversion

controlof configurationsin COOP/Orm.In ICSE’96
SCM-6Workshop, pages31–48,1996.

[15] H. OssherandW. Harrison.Combinationof inheritance
heirarchies.In Proceedingsof the1992Conferenceon
ObjectOrientedPrograms,Software, Languagesand
Applications, pages25–40,1992.

[16] H. Ossher, M. Kaplan,W. Harrison,A. e.Katz,and
V. Kruskal.Subject-orientedcompositionrules.In
Proceedingsof the1992ConferenceonObjectOriented
Programs,Software, LanguagesandApplications, pages
235–250,1995.

[17] OTI. ENVY/Developer:Thecollaborative component
developmentenvironmentfor IBM visualageand
objectshare,inc. visualworks.Webpage:available
onlineat: “http://www.oti.com/briefs/ed/edbrief5i.htm”.

[18] D. PerryandG. Kaiser. Infuse:a tool for automatically
managingandcoordinatingsourcechangesin large
systems.In Proceedingsof theACM ComputerScience
Conference, 1987.

[19] RationalClearCase.Pamphletat ”www.rational.com”,
2000.

[20] S.Reiss.Simplifying dataintegration:thedesignof the
Desertsoftwaredevelopmentenvironment.In
Proceedingsof ICSE18, pages398–407,1996.

[21] R. StocktonandN. Kramer. TheSheetshypercode
editor. TechnicalReport0820,CMU Departmentof
ComputerScience,1997.

[22] SunMicrosystems,Inc. TeamWareuser’s guides,1994.
[23] P. Tarr, W. Harrison,H. Ossher, A. Finkelstein,

B. Nuseibeh,andD. Perry, editors.Proceedingsof the
ICSE2000Workshopon Multi-DimensionalSeparation
of Concernsin Software Engineering, 2000.

[24] P. Tarr, H. Ossher, W. Harrison,andJ.S.Sutton.N
degreesof separation:Multi-dimensionalseparationof
concerns.In Proceedingsof the21stInternational
ConferenceonSoftware Engineering, pages107–119,
1999.

[25] W. Tichy. RCS- a systemfor versioncontrol.Software:
PracticeandExperience, 7(15),1985.

[26] A. vanderHoek,A. Carzaniga,D. Heimbigner, and
A. Wolf. A reusable,distributedrepositoryfor
configurationmanagementpolicy programming.
TechnicalReportCU-CS-864-98,Universityof
ColoradoDepartmentof ComputerScience,1998.

[27] A. vanderHoek,D. Heimbigner, andA. Wolf. A
generic,peer-to-peerrepositoryfor distributed
configurationmanagement.In Proceedingsof ICSE18,
March1996.

[28] D. Weintraub. TheNot-So-Official ClearCasepage.
webpage,1998.
URL=“http://www.eclipse.net/davidw”.

[29] A. Zeller. Smoothoperationswith squareoperators:the
versionsetmodelin ICE. In ICSE’96 SCM-6
Workshop, pages8–30,1996.

