
1

Cryptographic Authentication for Real-Time Network Protocols 1,2

David L. Mills3

Abstract

This paper describes a new security model and authentication scheme for distributed, real-time network
protocols used in time synchronization and event scheduling applications. It outlines the design require-
ments of these protocols and why these requirements cannot be met using conventional cryptography and
algorithms. It proposes a new design called autokey, which uses a combination of public-key cryptogra-
phy and a psuedo-random sequence of one-way hash functions. Autokey has been implemented for the
Network Time Protocol (NTP), but it can be adapted to other similar protocols. The paper describes the
protocol operations, data structures and resources required for autokey, as well as a preliminary vulnera-
bility assessment.

AMS keywords: cryptography 94A60, data encryption
68P25

1. Introduction

The Network Time Protocol (NTP) [5] is widely
deployed in the Internet to synchronize computer time to
national standards. The current NTP population includes
over 230 primary servers and well over 100,000 second-
ary servers and clients. It provides comprehensive
mechanisms to access national time and frequency dis-
semination services, organize the hierarchical network
server-client topology and adjust the clock of each par-
ticipant. It uses redundant servers, diverse network paths
and crafted algorithms which cast out incorrect servers
and minimize errors due to network latencies and clock
frequency variations. The protocol can operate in peer-
peer, client-server, and multicast modes, where the iden-
tity of the servers can be cryptographically authenti-
cated. In most places of the Internet of today, NTP
provides accuracies of 1-50 ms, depending on the char-
acteristics of the synchronization source and network
paths.

Most NTP servers and clients use the NTP Version 3 ref-
erence implementation for Unix, VMS and Windows,
which is a relatively complex, real-time, distributed
application. The architecture, protocol and algorithms
are specified in RFC-1305 [6]. The NTP Version 4 spec-

ification is not yet complete, but transition documents
are available [7] which describe the new features. The
NTP Version 4 reference implementation now under test
supports most of these features, including the authenti-
cation scheme described in this paper. Additional infor-
mation can be found at the NTP home page http://
www.eecis.udel.edu/~ntp and the author’s home page
http://www.eecis.udel.edu/~mills.

The NTP security model is common to many other ubiq-
uitous, distributed applications, such as directory ser-
vices, web servers and archive repositories.
Conventional authentication models are based on pub-
lic-key cryptography and digital signatures; however,
the known public-key algorithms drastically degrade
timekeeping accuracy and require significant computing
resource commitments. Current key-agreement schemes
based on Diffie-Hellman [11] do not scale well in a large
network with thousands of servers and clients. Further-
more, a time-sensitive protocol such as NTP places
severe requirements on latency and available resources
which cannot be satisfied using conventional
approaches. With NTP, cryptographic media lifetimes
and time synchronization interact in complicated ways
that can affect the security of all authenticated network
services.

This paper presents a new security model and authenti-
cation scheme for NTP and similar real-time protocols.

1. Sponsored by: DARPA Information Technology Office Contract DABT 63-95-C-0046, NSF Division of Network
and Communications Research and Infrastructure Grant NCR 93-01002, Northeastern Center for Electrical Engi-
neering Education Contract A303 276-93, Army Research Laboratories Cooperative Agreement DAA L01-96-2-
002, and Digital Equipment Corporation Research Agreement 1417.

2. Reprinted from: Mills, D.L. Cryptographic authentication for real-time network protocols, in: AMS DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, Vol 45 (1999), 135-144.

3. Author’s address: Electrical and Computer Engineering Department, University of Delaware, Newark, DE
19716, mills@udel.edu, http://www.eecis.udel.edu/~mills.

2

It begins with an overview of the NTP protocol opera-
tions, in order to provide a context for the remainder of
the paper. Following this is a description of the new
authentication scheme, called autokey, which provides
public-key based authentication of servers where the
cryptographic keys are randomly generated and used
only once. The paper concludes with a discussion of
possible weakness in the scheme and an assessment of
its vulnerability to specific attacks.

2. NTP Version 3 Security Model and
Authentication Scheme

The existing NTP security model and authentication
scheme described in the NTP Version 3 specification
RFC-1305 were developed some years ago in response
to what were then considered likely directions in the
evolution of generic Internet security models and
authentication schemes. Since then, there have been sig-
nificant developments in the field of cryptographic algo-
rithms and security models. In order to understand how
the current authentication scheme works and how it has
evolved to the autokey scheme, it is necessary to under-
stand the various modes of operation and how previ-
ously unknown servers are discovered.

It is important to point out at the outset that the NTP
security model is intended only to verify that a server is
in fact authentic and not an intruder attempting acci-
dently or on purpose to impersonate a legitimate server.
It is not necessary, nor would it be politically expedient,
to encrypt the timestamps or otherwise hide the data in
NTP messages, since these are public values. It is not
the intent in the model to include access controls; other
mechanisms based on network address and port filtering
are available for that. It is not necessarily the case that
the model includes protections from message loss,
duplication or corruption, since these are provided by
the NTP protocol itself.

A NTP client normally operates with several servers, in
order to provide redundancy and insure correctness. It
discovers these servers by indexing directory services or
by intercepting multicast messages they send. The state
variables for each server belong to a client process, or
association, which can operate in various modes using
point-to-point and point-to-multipoint communications
paradigms. In peer-peer and client-server modes, a cli-
ent sends a request to a designated server address and
expects a reply from which it can determine the relative
clock offset and roundtrip delay. Synchronization flow
is strictly from server to client in client-server modes,
but can flow either way in peer-peer modes. In multicast
mode, a server sends a message to a designated multi-
cast group address. Multicast clients normally listen on

the designated address and send no requests. Some mul-
ticast servers can also respond to client-server requests,
so that clients can calibrate the network propagation
delay before continuing operation in listen-only mode.

The NTP security model recognizes that individual serv-
ers can fail or operate incorrectly or even attempt to dis-
rupt other servers and clients in one way or another. In
addition, network links can fail, routes can change or
become congested, and cryptographic keys and even
security policies can change while in regular, continuous
operation. However, at any one time, synchronization
flows from the primary time servers at the root of the
NTP tree graph or subnet to all secondary servers and
clients at increasing stratum levels toward the leaves.
The model requires the authentication tree to follow the
same subnet paths. Thus, if the primary servers are cor-
rectly synchronized and authenticated (by outside
means) and, if each secondary server and client is syn-
chronized and authenticated to each server at the next
lower stratum level, the subnet is considered secure.

The authentication scheme described in RFC-1305 is
designed to support this security model. This scheme
has since been augmented to include provisions for the
MD5 message digest algorithm [12], in addition to the
DES-CBC [8], [9] algorithm. The scheme contains pro-
visions to cryptographically authenticate individual
servers operating in any mode using a symmetric-key
cryptosystem and private keys.

In RFC-1305, an association is distinguished by source
and destination network addresses and assigned a secret
cryptographic key, which is stored in a secure database.
The key is accessed by a unique key identifier, which
serves a purpose similar to the security parameter identi-
fier (SPI) described in recent internet drafts [2], [3]. The
key is used to construct a message digest (one-way hash
function) of the message using either keyed MD5 [4] or
DES-CBC. The key identifier and message digest
together form the message authentication code (MAC),
which is transmitted following the NTP packet header.
The recipient uses the key identifier included in the
MAC to retrieve the secret key from its own secure data-
base and verifies the authenticity of the message by
computing the message digest and comparing it with the
corresponding value included in the MAC.

The authentication function itself is reasonably fast,
even with thousands of clients and in servers providing
other functions, such as file sharing, name resolution
and security services. The busiest Internet servers have
well over 750 clients producing an average (input plus
output) of over ten packets per second. For a Sun IPC
workstation, which is slow by today’s standards, the

3

average time to service a non-authenticated packet is
about 1.5 ms; authentication adds about 0.28 ms to this
figure. However, even the busiest servers spend not
more than about 1.6 percent of the available processing
resources for all NTP operations.

It is possible to engineer some interesting and useful
security topologies by sharing a single key among a set
of servers and clients. For example, a closely cooperat-
ing clique of primary servers operating in peer-peer
modes can share a single key, in order to provide backup
for each other if a radio clock source fails. This avoids
having to distribute a different key to every server in the
clique. In another example, a set of servers can operate
in multicast mode with a single key, so that a client pop-
ulation can synchronize to any of them without requir-
ing separate keys for each one.

3. Autokey Authentication Scheme

While the current NTP security model and authentica-
tion scheme have been in use for well over a decade,
there are several drawbacks, the most serious being the
requirement that keys must be securely distributed in
advance for all server-client pairs. There are no provi-
sions in the NTP protocol specification for key distribu-
tion or management on the assumption these functions
can be provided by standard network security services.
Even if such services were available, the large number
of associations, well over 250,000 in the current NTP
subnet, would make the operations to securely manufac-
ture and distribute keys and enforce their lifetimes very
difficult to sustain. In addition, the recent addition of
multicast modes raises new issues where the identity of
servers is not known in advance and their credentials
must be determined using only public values.

The autokey scheme described in following sections is
specifically tailored to the needs of time-sensitive proto-
cols where the keys are randomly generated and used
only once, as in the S/KEY scheme [1]. It involves three
stages of operation for each potential server. In the first
stage, the server network address is determined, either
directly from directory services or from an intercepted
multicast message, and an association mobilized to
communicate with the server. In the second stage, time
synchronization and server authentication functions pro-
ceed independently.

As each function proceeds, potential servers that fail the
authentication test are discarded and keys that fail the
lifetime test are discarded. The third stage begins when
the time-sensitive server credentials are verified and the
server joins the population used to discipline the system
clock. Subsequently, the authenticity of each NTP mes-

sage is verified using mechanisms described in the next
section.

3.1 Conventional Approaches

In a perfect world with inexhaustible processor and
memory resources, a public-key cryptosystem such as
RSA public-key infrastructure (PKI) [10] would be a
good foundation on which to build the authentication
scheme. In a typical scheme such as RSA or El Gamal
digital signatures, each server or clique of servers is
assigned a public/private key pair along with public val-
ues such as the algorithm modulus, server name, and
network addresses. The private key is held by the server
and never divulged. The public values are stored in
directory service databases, together with one or more
digitally signed certificates which bind the public values
to a trusted agent serving as a notary.

The power of public-key cryptography lies in the fact
that a message encrypted with a given private key can be
correctly decrypted only using the corresponding public
values. In order to minimize the vulnerability to crypto-
graphic attack, every message must be individually
signed using the server private key. In order to minimize
the processor requirements, the usual practice is to con-
struct the message digest using a one-way hash function
such as MD5, then encrypt it using RSA and the server
private key. The result is stored in the MAC and trans-
mitted with the message.

To verify the signature, the client decrypts the MAC
using the server public values, then compares the result
with its own message hash. If the two values agree, the
message must be authentic, since only the designated
server has the corresponding private key. In practice, the
public values must be cryptographically bound to the
server name and address, as verified by a trusted certifi-
cate authority. A certificate including these values is
then installed in a public directory service such as the
DNS.

Constructing the MD5 message digest is a relatively fast
operation involving only standard arithmetic and logical
functions. For instance, the time to construct the NTP
message digest on a Sun SPARC 20 is 54 us and 291 us
on a SPARC IPC. However, even when the encrypted
data are a relatively small 16-octet MD5 hash, the RSA
encryption operation is expensive. For instance, the pro-
cessor time to generate a NTP MAC using MD5 and
RSA ranges from 80.4 ms on a Digital Alpha to 2.1 s on
a Sun SPARC 1.

In principle, the encryption times can be measured in
advance and used to correct time values. However, there
is a large variance in running times, depending on the

4

population of one bits in the key and other factors. For
example, with random bit strings as keys, the Alpha
requires a mean time of 80.4 ms; however the actual
times range from 53.3 ms to 104.4 ms. Since time values
must be obtained before encryption, these variations
translate directly to timekeeping errors. While there are
other schemes based on public-key cryptography, all are
based on computation-intense algorithms and are likely
to behave in a way similar to RSA. For these reasons,
the autokey scheme does not require each message to be
individually signed.

An alternative to authenticating each message is a key
distribution scheme, in which the server generates a ses-
sion key and transmits it to the client using public-key
cryptography, or a key agreement scheme, in which the
server and client jointly agree on a joint session key
using a variant of Diffie-Hellman. Either way requires
servers to hold a distinct key for each client and for cli-
ents to hold a distinct key for each server. Either of these
schemes requires the server and client to maintain per-
sistent state variables, but this may not be possible for a
server with hundreds or thousands of clients. For this
reason, the autokey scheme must not depend on pair-
wise private keys.

3.2 Interactions Between Synchronization and
Key Lifetimes

A basic rule in all key distribution and management
schemes is that cryptographic key and certificate media
must have enforced lifetimes. Specific keys must be
destroyed and replaced from time to time, in order to
frustrate potential cryptanalysis. New keys must not
work with old data and old keys must never be used
again. Obviously, reliable lifetime enforcement requires
reliable time synchronization. If secure timekeeping is
dependent on lifetime-enforced cryptographic media, an
interesting circularity results. In principle, this circular-
ity can be resolved through the use of special timekeep-
ing hardware present in some drop-in security devices,
such as the Fortezza card; however, this hardware is
politically unacceptable in some contexts and does not
work for all computers manufactured today.

If trusted hardware is not available, the autokey scheme
treats clock synchronization and server authentication as
separate functions. These considerations require that
these functions may have to operate when reliable net-
work timekeeping has not yet been established or when
the keys have not yet been certificated. The most com-
mon case occurs when a client is first started after reboot
or when the server configuration is changed. In these
cases, the key distribution and management functions
must operate even when key lifetimes are not enforced

and before the local clock has been reliably set. Thus,
any protocols used by NTP itself to initiate crypto-
graphic associations must not depend on prior key
exchanges that are themselves dependent on synchro-
nized clocks.

A public-key cryptosystem requires reliable directory
services to obtain the server public values, including the
server name, network address, public key, modulus and
optional certificates. In principle, these services are
required to be synchronized to trusted sources only if
they support encryption or decryption operations, since
these operations require keys with enforced lifetimes.
Presumably, the availability and authenticity of the pub-
lic values depend on databases accessible via inband or
outband mechanisms; however, the ultimate decision on
whether the data are authentic rests with the clients of
these services, not the server itself.

In general, server public values are obtained during the
initial configuration process when the client is first
started. This is done for each server separately while at
the same time provisional time values are collected.
Since reliable encryption and decryption operations can-
not be done unless the clock is synchronized and the
lifetimes verified, this requires the client to fetch all
cryptographic values first, then perform the decryptions
on a tentative basis. When sufficient time values have
accumulated to reliably synchronize the clock, the life-
times can be checked against the tentative time. If all
checks agree, the server is considered authentic. There-
after, the authenticity of its messages must be deter-
mined by other means as described below.

3.3 Cryptographic Operations

Certain extensions to the existing NTP security model
and authentication scheme are required for autokey to
support additional cryptographic data in the packet
header and to enforce key lifetime. The packet format
has been revised to include an optional extension field,
which is inserted between the end of the NTP header
and the beginning of the MAC. The cryptographic mes-
sage digest is constructed using all the data between the
beginning of the NTP header to the beginning of the
MAC, including the extension field, if present.

A cryptographic key consists of a 4-octet key identifier,
a variable length key, a key type indicator (DES or
MD5), a validity indicator, and a remaining lifetime
counter. In the NTP reference implementation, these
values are stored in a key cache, with the most recently
used key saved in a special location for quick access. A
miss on the key identifier causes the new key to replace
the old key, which is stored in the key cache. The key

5

cache itself uses a hash table for quick lookup. Routines
are provided to create an entry, mark it valid and specify
its lifetime. The validity indicator provides a mechanism
to create a block of keys in advance and enable them as
a block at a given time.

In order to preserve backwards compatibility, there are
two ranges of key identifier values. Private keys have
identifiers less than 65,536 and are assigned specific
values with indefinite lifetimes. Random keys have
identifiers greater than 65,536 and are assigned random
values or hashes of a random values with designated
lifetimes. During normal operation, the remaining life-
time of each random key is decremented once each sec-
ond. When this value decrements to zero, the entry is
automatically expunged from the cache. While the asso-
ciation of key identifier and key is arbitrary in this
design, an important consequence is that each key iden-
tifier must be unique and never replicated in the cache
during its lifetime.

3.4 Protocol Operations

As each autokey server is registered with directory ser-
vices, it generates a RSA public/private key pair and
constructs a certificate trail which clients can use to ver-
ify the authenticity of the public values. Registering the
server can be a lengthy process involving interactions
with many other services, so this is done only on rare
occasions during the server lifetime. Each server main-
tains a private random value used as a master key-gener-
ating key. This value is refreshed at intervals of about
one day using a good random generator, which is a rela-
tively expensive operation taking up to several seconds
on modern workstations. The random keys in the key
cache must be expunged when the RSA key pair or mas-
ter key are changed.

Clients may operate several simultaneous server associ-
ations, each identified by a unique source and destina-
tion address. At intervals on the order of a thousand
seconds, the server generates a 4-octet random seed
using a fast algorithm and computes the 16-octet MD5
hash of this value concatenated with the current master
key. This is the first entry in a pseudo-random sequence
or key list of 16-octet session keys The least significant
four octets of the hash is used as the key identifier for
the second entry, which is constructed as the MD5 hash
of the concatenated source and destination network
addresses and the key identifier of the first entry. Note
that the autokey scheme in effect includes all significant
fields of the NTP message, not just the NTP header as in
the original scheme, and thus provides additional secu-
rity.

Continuing in this way, the server completes the key list,
which may have from a few to several hundred entries,
depending on the interval between master key regenera-
tions and the interval between NTP messages. Finally,
the server encrypts the last session key using its RSA
private key, and saves the result for later.

The server uses the key list in inverse order; that is, the
last entry is used first and is assigned sequence number
zero, then the next before that, which is assigned
sequence number one, and so on until all entries have
been used. At this point, the server generates a new ran-
dom seed and computes a new key list as before. Each
time the server uses an entry, it stores the low order four
octets of the next session key (not yet used) in the key
identifier field of the packet and the sequence number
and encrypted last session key in the extension field.
Formulated in this way, the server does not need to
recalculate session keys as they are needed and can
expunge them immediately after use.

A client authenticates each message relative to the mes-
sage that immediately precedes it. It computes the ses-
sion key and message digest as described above, then
extracts the low order four octets of the session key and
compares them with the key identifier of the previous
message, which has been saved for this purpose. If the
values agree, the current message is considered valid. If
not, a message might have been discarded in transit, so
the client hashes again. This procedure may continue for
a maximum number of hashes equal to the current
sequence number. To complete the procedure, the client
decrypts the last session key, which is included in the
extension field, and verifies it matches the final hash.

4. Security Vulnerabilities

In the NTP security model, the first line of defense is
access control based on an address value bounds check.
This is followed by the authentication scheme, and a set
of sanity checks which deflect old duplicates or mes-
sages with format errors or data range errors. The
crafted NTP filtering, selection, clustering and combin-
ing algorithms are designed to distinguish between
truechimers that are correctly synchronized to UTC, and
falsetickers that are not. The bottom line is that an attack
succeeds if the intruder can fool all of these algorithms
into accepting a real falseticker as a truechimer or reject-
ing a real truechimer as a falseticker.

An intruder can try to break the various cryptographic
keys used by the autokey scheme, including the RSA
private key, master key, random seed used to generate
the session key list, or an individual session key. For all
practical purposes, the RSA private key and the master

6

key are cryptographically unassailable. However, the
attacker may choose as target an individual session key.
Since the source and destination network addresses are
known, only the 4-octet key identifier for a session key
not yet used needs to be known in order to predict the
remaining session keys on the list.

The attacker might start by intercepting a legitimate
message, then try to guess a key identifier that results
after one or more hashes to match the key identifier in
the message. This might not be as hard as it seems. The

work function for a successful attack is O(231) MD5
hashes. If each hash takes one microsecond, which
might be possible with future hardware, the intruder
succeeds on average after only 2000 seconds, so the
scheme would be classed as cryptographically weak.
While it would be simple to extend the key length by
changing the packet header format, this would create an
incompatibility with older versions of the protocol. The
difficulties this would create outweigh the advantages of
a longer key.

Depending on the network configuration and location of
the intruder, it may be able to intercept, delay and
retransmit messages (replay attack), modify these mes-
sages (modification attack), or prevent onward transmis-
sion and attack in either of these ways (middleman
attack), or even clog the network, server or client with
spurious traffic (clogging attack).

A middleman can intercept, delay and replay selected
messages from the client to the server or from the server
to the client. These messages will be properly authenti-
cated so will be believed correct. The middleman can
delay the message or pass on only certain messages
while discarding all others. The effect would be to intro-
duce a statistical bias in the timekeeping data or to cause
the client to believe the server is unstable. Such attacks
may be hard to detect, since much the same thing hap-
pens as the result of normal network behavior. There is
no intrinsic protection against this attack, other than the
NTP mitigation algorithms, which rely on the inherent
redundancy and diversity of the synchronization subnet
to resist attack.

The session key applies only to the current message and
is not useful for any subsequent message. However, an
middleman could intercept a legitimate server message
and learn the current session key before clients have
received the message. The intruder is then free to manu-
facture a bogus message which will be accepted by these
clients. There appears to be no defense against this
attack other than using public-key cryptographic signa-
tures on every message.

In a clogging attack, the intruder attempts to deny ser-
vice by overwhelming the resources of the client, server
or network by generating large volumes of traffic, either
replay or bogus. Clogging attacks to not require the
intruder to pry open legitimate NTP messages, just the
capability to clone a valid NTP message. By its very
nature, NTP operating in client-server or multicast
modes is designed as a ubiquitous service; that is, a
server will ordinarily respond to any client request with-
out necessarily authenticating the request or checking to
see if it contains valid data. As the processor cycles nec-
essary to reply to a client request are only modest and no
additional state persists after the reply has been gener-
ated, the vulnerability of a server to a clogging attack is
minimal. However, an intruder can manufacture an oth-
erwise correct NTP message, but substitute a bogus key
identifier with correct session key and MAC. The victim
can discover the message is bogus, but only after
repeated hashes and a significant resource investment to
validate the RSA signature.

In the old authentication scheme, an intruder can disable
a properly authenticated source by a contrived jamming
attack. It can simply send a stream of bogus messages to
the victim, which will cause it to expunge all time val-
ues, legitimate or not. This lesson having been learned,
in the autokey scheme bogus messages are discarded
before any damage can result.

5. Summary and Conclusions

The design of a robust security model and authentication
scheme for a time-sensitive protocol such as NTP is not
a straightforward application of current cryptographic
technology. The scheme must be scalable, non-invasive
of processor resources and continue support for legacy
protocol versions. It must allow server authentication
and time synchronization to proceed independently to
avoid circular dependencies that might lead to deadlock.
The autokey scheme described in this paper has been
devised to comply with these requirements. It uses a
combination of public-key cryptography with one-way
hash algorithms where keys are randomly generated and
used only once.

The alpha distribution of the reference implementation
for NTP Version 4, which includes the autokey scheme,
has been in regular operation for several months. While
it includes all the protocol mechanisms described in this
paper, the mechanisms to retrieve public values from
secure directory services have yet to be implemented. It
is anticipated that these mechanisms will be incorpo-
rated in the form of application libraries made available
from other sources.

7

6. References

Note: Internet Drafts are perishable memoranda describ-
ing works in progress and may change in substantial
ways before final publication as research reports. They
are cited here only when no other source of the material
is available.

1. Haller, N. The S/KEY one-time password system.
Network Working Group Report RFC-1760.
Bellcore, February 1995, 12 pp.

2. Karn, P., and W.A. Simpson. The Photuris session
key management protocol. Network Working
Group Internet Draft, Qualcomm, November 1995,
66 pp.

3. Maughan, D., M. Schertler. Internet security associ-
ation and key management protocol (ISAKMP).
Internet Draft, National Security Agency, Novem-
ber 1995, 59 pp.

4. Metzger, P., and W. Simpson. IP authentication
using keyed MD5. Network Working Group Paper
RFC-1828, Piermont and Daydreamer, August
1995, 5 pp.

5. Mills, D.L. Internet time synchronization: the Net-
work Time Protocol. IEEE Trans. Communications
COM-39, 10 (October 1991), 1482-1493.

6. Mills, D.L. Network Time Protocol (Version 3)
specification, implementation and analysis. Net-
work Working Group Paper RFC-1305, University
of Delaware, March 1992, 113 pp.

7. Mills, D.L, and A. Thyagarajan. Network time pro-
tocol version 4 proposed changes. Electrical Engi-
neering Department Paper 94-10-2, University of
Delaware, October 1994, 32 pp.

8. DES modes of operation. FIPS Publication 81,
National Bureau of Standards, December 1980.

9. Data encryption standard. FIPS Publication 46-1,
National Bureau of Standards, January 1988.

10. PKCS #1: RSA encryption standard, Version 1.5.
RSA Laboratories, November 1993.

11. PKCS #3: Diffie-Hellman key-agreement standard,
version 1.4. RSA Laboratories, November 1993.

12. Rivest, R. The MD5 message-digest algorithm.
Network Working Group Paper RFC-1321, MIT
and RSA, April 1992, 21 pp.

