Electrical Engineering Department University of Delaware
Technical Report 94-10-1 October 1994

Unix Kernel Modifications for Precision
Time Synchronization

David L. Mills

Abstract

This report is a substantial revision of RFC-1589, “A Kernel Model for Precision Timekeeping,”
March, 1994. It includes several changes to the daemon and user interfaces, as well as a new feature
which disciplines the CPU clock oscillator in both time and frequency to a source of precision time
signals, as well as provisions to operate with good accuracy at much higher poll intervals in the
order of several hours.

This report is included (in ASCII format) as the README.kern file in the NTP Version 3
distribution for Unix, as well as distributions for SunOS, Ultrix and OSF/1 kernel modifications
which support precision time functions. Detailed technical information, including source code
segments implementing these functions, is also available. Availability of the kernel distributions,
which involve licensed code, will be announced separately.

Keywords: operating systems, computer clock, time synchronization, disciplined oscillator.

Sponsored by: Advanced Research Projects Agency under NASA Ames Research Center contract
NAG 2-638, National Science Foundation grant NCR-93-01002 and Northeastern Center for
Engineering Education contract A30327-93.

Overview

This report describes an engineering model which implements a precision time-of-day function for
a generic operating system. The model is based on the principles of disciplined oscillators using
phase-lock loops (PLL) and frequency-lock loops (FLL) often found in the engineering literature.
It has been implemented in the Unix kernels for several workstations, including those made by Sun
Microsystems and Digital Equipment. The model changes the way the system clock is adjusted in
time and frequency, as well as provides mechanisms to discipline its frequency to an external
precision timing source. The model incorporates a generic system-call interface for use with the
Network Time Protocol (NTP) or similar time synchronization protocol. The NTP Version 3 daemon
xntpd operates with this model to provide synchronization limited in principle only by the accuracy
and stability of the external timing source.

This report does not propose a standard protocol, specification or algorithm. Itis intended to provoke
comment, refinement and implementations for kernels not considered herein. While a working
knowledge of NTP is not required for an understanding of the design principles or implementation
of the model, it may be helpful in understanding how the model behaves in a fully functional
timekeeping system. The architecture and design of NTP is described in [MIL91], while the current
NTP Version 3 protocol specification is given in RFC-1305 [MIL92a] and a subset of the protocol,
the Simple Network Time Protocol (SNTP), is given in RFC-1361 [MIL92c].

The model has been implemented in the Unix kernels for three Sun Microsystems and Digital
Equipment workstations. In addition, for the Digital machines the model provides improved
precision to one microsecond (us). Since these specific implementations involve modifications to
licensed code, they cannot be provided directly. Inquiries should be directed to the manufacturer’s
representatives. However, the engineering model for these implementations, including a simulator
with code segments almost identical to the implementations, but not involving licertiedsco
available via anonymous FTP.

The NTP Version 3 distribution and technical information distributions can be obtained via
anonymous ftp from louie.udel.edu in the directory pub/ntp. The compressed tar archive
xntp3.v.tar.Z contains the NTP Version 3 distribution, where v is the version identifier and may be
incremented in future versions. In order to utilize all features described in this report, the NTP
version identifier should be 4f or later. The compressed tar archive kernel.tar.Z contains additional
technical information, as well as this file.

Table of Contents

1. Introduction L e e 1
2. Design Approach 1 ..
2.1. Mechanisms to Adjust Time and Frequency 2
2.2. Daemon and Application Interfaceo 3
2.3. Precision @icks for DECstation 5000/240 and 3000 AXP Alpha 4
2.4. External Time and Frequency Discipline 5
24.1. PPS Signal S ..
24.2. ExternalClocks 6 ...
2.43. External Oscillators 7
2.5. Other Features e 7. ..
3. Technical Summary L 7
3.1. PLL/FLL Simulation e 8
3.2. The hardupdate() Routine 8
3.2.1. The hardclock Fragment L 9
3.2.2. The second_overflow Fragment 10
3.2.3. The hardpps() Fragment 11
3.2.4. External Clock Interfaceo 13
3.3. Leap Seconds 13
3.3.1. Clock Status State Machineo 14
4. Programming Model and Interfaces oL 16
Table 1. Comparison of UTC and NTP Timescales at Leap16
4.1. The ntp_gettime() System Callo 17
4.2. The ntp_adjtime() System Call 18
5. References e e 24. .

List of Tables

Table 1. Comparison of UTC and NTP Timescales at Leap16

